
>I1,> I 01 ■ ' JUO ' 0 ' C' • v-1Ö^ti ■ i'j-;i/.«j m:\ :''

REPORT DOCUMENTATION PAGE
AFRL.SR-BL-TR-99- ;

i. WOW TTH. AMD 0AIÖ COVWEO
Final Technical 9/28/95-9/30/98.

V, imi ANO aurntvx
"Fast Multipole Methods for Electromagnetic
Circuit Computations"

Vladimir Rokhlin

OKOANCZAnOM MAM«$i AMO AODRUSiST

PAL»***00"*

JMfr

Fast Mathematical Algorithms & Hardware Corporation
1020 Sherman Avenue
Hamden, CT 06514-1337

1 jMNSOMNa/MOMTOWII« AOiNCT *A*«(Sl AHO AO&USKES)
USAF, AFMC
Air Force Office of Scientific Research
110 Duncan Avenue, Suite B115
Boiling AFB, DC 20332-0001

ii. iurruMiMJ*an WQ*K

S. ,* WORMHM OMiANiZATKM
«PO«T NUM1IJI

10. SJONSCWWIG/ MONITOMM
AfitMCr «IPQITftUMIU

"a«.UfiuiuTioNiA«AaAaiurr STATIMOIT

"Distribution Statement A. Approved for public release;

Distribution is unlimited."

t2to. OKTB1BUTIOM COM

H.AMWAcr (imw*iw«—» During the existence of the project, we designed Fast Multipole
algorithms for the solution of the Laplace and Helmholz equations, the latter predominate]
in the low-frequency regime. The principal analytical apparatus used were the new diago-
nal forms of translation operators for the Laplace and Helmholtz equation; such diagooal
forms in turn required the use of Generalized Gaussian Quadratures, which we have also
designed. In addition, we redesigned the logical structure of such algorithms, drasticaU
reducing their memory requirements. At the present time, extremely efficient Fast Multi-
pole Methods for the Laplace equation in three dimensions are in existence; the construc-
tion of such schemes for the Helmholtz equation in the low-frequency regime has been
reduced to a purely programming task. Six publications reporting tnis work have appeared
(or been accepted) in refereed journals; two publications have been released in the report
form, and are about to be submitted to refereed journals; three publications are in pre
paration

tw &o«$

oASsmaum is.

H*«tiWtan&>

15. atmstt

~3B. UMKTATlOMOr

OL «MrtT

XGiL^ 'i»

FAST MULTIPOLE METHODS FOR ELECTROMAGNETIC
CIRCUIT COMPUTATIONS

Final Technical Report
December 31,1998

Dr. Vladimir Rokhlin
Fast Mathematical Algorithms & Hardware Corporation

1020 Sherman Avenue
Hamden,CT06514

(203) 248-8212

CD
CO
CO
o
CO

This research was performed under Contract #: F49620-95-CO075 ££)
Approved for public release; distribution is unlimited.

CO

1. Final Report for Years 1995-1998

The purpose of this project has been to develop Laplace and Low-Frequency Helmholtz Fast

Multipole Algorithms. These are fundamental building blocks (and computational logjams) for

circuit simulation. At the inception of the project, we felt that the following steps would have

to be undertaken to assure its eventual success.

1. Design the improved diagonal forms for the translation operators for the Laplace and low-

frequency Helmholtz equations.

2. Design improved algorithms for the construction of Generalized Gaussian Quadratures

required by the diagonal forms of the preceding paragraph.

3. Design and implement the improved FMM schemes for the Laplace and low-frequency

Helmholtz equation, first in two and later in three dimensions.

4. Design the numerical machinery for the interpolation and filtering of band-limited functions

on the sphere, required by advanced versions of the Helmholtz FMM.

5. Implement the final versions of the FMM for the low-frequency Helmholtz equation, both

as a stand-alone device in circuit modeling and related areas, and as the sub-wavelength part

of a high-frequency modeling code.

The project has been in existence for 3 years (as per our proposal), and the first four of

the above five steps have been entirely completed; results of this work are reported in the

publications [4], [1], [3], [2], [9], [11], [10], [12]. Of these, [4], [3], [9], [11], [10], [12] have

been either published or accepted for publication; since [1], [2] have not been submitted for

publication at this time, their copies are attached.

The fifth step has been in part completed at FMAH, in part by our collaborators at Boeing,

and in part it is being completed at the present. Three publications are in preparation reporting

this step. The following personnel have been involved in this project: R. Coifman, M. Goldberg,

L. Greengard, T. Hagstrom, M. Israeli, V. Rokhlin, J. Stromberg.

Below is a description of our effort year-by-year.

Year 1

1. We started our work with the design of an improved version of the Fast Multipole Method

for the Laplace equation in two dimensions. In addition to having its own applications, this

scheme was viewed as a stepping stone to three-dimensional problems, first for the Laplace and

later for the low-frequency Helmholtz equation. This work was completed during the first year

of the project, and the paper reporting it recently appeared in the SISC (see [4]).

2. A preliminary (non-adaptive) version of the improved FMM for the Laplace equation in three

dimensions was designed and implemented. The algorithm uses diagonal forms of translation

operators based on the Generalized Gaussian Quadratures, designed by us specifically for this

purpose (and to be used in similar situations that might arise in the future). At this stage,

the FMM became an effective tool for high-precision potential calculations in three dimensions.

On the other hand, the scheme implemented at this time was not adaptive, and its memory

requirements were deemed excessive. The algorithm is described in [3]. As often happens, by

the time we finished [3], we had constructed several additional improvements to the scheme. It

was decided to incorporate these improvements in the adaptive version of the algorithm; the

paper [3] does not contain them.

3. The improvements in the design of Fast Multipole algorithms described in the preceding

two paragraphs were made possible by the existence of a class of diagonal representations of

translation operators (for Helmholtz, Laplace, and Yukawa equations), ultimately based on

the Generalized Gaussian Quadratures. The latter have been known for a very long time (the

oldest references we are aware of are Markov's papers at the end of the last century). On the

other hand, the classical proofs do not provide any mechanism for the numerical construction

of such schemes. Thus, we launched an effort to construct an algorithm for the design of

such quadratures. The effort was successful, and is reported in [10]; at that time, the obtained

quadratures were virtually optimal for the Laplace equation, in both two and three dimensions.

The Helmholtz and Yukawa equations required additional quadrature work.

4. "Fast" schemes for the application of discretized integral operators are a critical element of

an effective circuit simulation environment. Another critical element of such an environment

is our ability to discretize the integral equations effectively. Previously, we had neglected this

aspect of the problem; during the first year of the project, we started a systematic investigation

of relevant discretization schemes and associated quadrature formulae.

Year 2

1. During the first year of the project, we had constructed a preliminary (non-adaptive)

version of the FMM for the Laplace equation in three dimensions. While the scheme had satis-

factory CPU timings for all accuracies of practical importance, its memory requirements were

deemed excessive, and we felt that the design of translation operators we used could be im-

proved. Thus, a significant amount of effort was contributed to the design of an improved FMM

for the Laplace equation (principally, in three dimensions) based on improved representations

of the potential; we have also designed a reformulation of the algorithm with dramatically re-

duced memory requirements. The resulting scheme is about twice faster than the one produced

during the first year of the project, and its memory requirements were reduced by better than a

factor of 5. The report describing the scheme was delayed, and appeared only in 1998 (see [1]).

2. An outstanding problem in the design of Fast Multipole Methods for the Helmholtz equation

has been the expense associated with filtering and interpolation of functions on the sphere. For

the FMM in two dimensions, the relevant procedure is easily performed on the circle via the

FFT at a nearly optimal cost; the same operation on the sphere can not be implemented via

standard algebraic procedures. During the second year of the project, we observed that there

exists a version of the FMM in one dimension that performs the interpolation and filtering on

the sphere in (asymptotically) optimal time; it should be mentioned that it is a modification of

an earlier scheme by B. Alpert and R. Jakob-Cbien (see [5]). The algorithm was implemented

and made available to the Boeing and Hughes groups. Reports describing our new design of the

FMM in one dimension and on the application of such schemes to filtering and interpolation

on the sphere are attached (see [11, 12]).

3. One of principal purposes of this project has been the design of a version of the FMM for the

Helmholtz equation at low frequencies, and of a scheme combining such a version with the high-

frequency FMM; in that sense, an efficient scheme for the Laplace equation is a preliminary

step. We derived the integral representations analogous to those used in the recent FMM

scheme for the Laplace equation, and tested it with a preliminary version of the quadratures.

A report [9] describing these developments is attached.

Year 3

1. We have concluded the design of special-purpose quadratures to be used for the diagonal

representation of potentials for the low-frequency FMM for the Helmholtz equation, and for the

Yukawa equations (both in two and three dimensions). The scheme we have constructed are

an extension of the techniques we constructed in [10] and used in [4], [1] to design an FMM for

the Laplace equation in two and three dimensions, respectively; we believe that the resulting

implementations are more or less optimal. A paper reporting this work is in preparation, and

we are we are enclosing a draft [2].

2. In accordance with our usual practice, we have implemented preliminary (non-adaptive)

versions of the Yukawa and low-frequency Helmholtz equations. The resulting algorithms are

similar (in terms of speed, accuracy, and complexity) to the algorithm for the Laplace equation

reported in [3]. The report describing this work is in preparation.

3. To some extent, during the final stages of this project, we reduced our concentration on

the mechanics of the FMM itself, and intensified our investigation of collateral issues, such

as discretization of surfaces, connection with the recently developed time-domain solvers, the

possibility of direct solvers in the frequency domain, issues arising in the application of our

techniques in the high-frequency regime (the latter being, arguably, outside the scope of this

project). The principal reason for this redeployment is the fact that the FMM in its original

form is rapidly becoming an accepted tool in several areas, and it has not been the purpose of

this project to design algorithms for specific applications.

References

[1] H. CHENG, L. GREENGARD, V. ROKHLIN, A Fast Adaptive Multipole Algorithm in Three

Dimensions, Yale University Technical Report, YALEU/DCS/RR-1158, 1998.

[2] H. CHENG, V. ROKHLIN, N. YARVIN, Non-linear Optimization, Quadrature, and Inter-

polation, Yale University Technical Report, YALEU/DCS/RR-1169, 1998.

[3] L. GREENGARD, V. ROKHLIN, A new version of the Fast Multipole Method for the Laplace

Equation in three dimensions, Acta Numerica, 1997, pp. 229-269.

[4] T. HRYCAK, V. ROKHLIN, An Improved Fast Multipole Algorithm for Potential Fields,

Research Report 1089, Yale Computer Science Department, 1995.

[5] R. JAKOB-CHIEN, B. ALPERT, A Fast Spherical Filter with Uniform Resolution, Journal

of Computational Physics, Vol. 136, No. 2, 1997.

[6] J. MA, V. ROKHLIN, S. WANDZURA, Generalized Gaussian Quadratures For Systems of

Arbitrary Functions, SIAM Journal of Numerical Analysis, v. 33, No. 3, pp. 971-996, 1996.

[7] A. A. MARKOV, On the limiting values of integrals in connection with interpolation, Zap.

Imp. Akad. Nauk. Fiz.-Mat. Otd. (8) 6 (1898), no. 5 (Russian), pp. 146-230 of [8].

[8] A. A. MARKOV, Selected papers on continued fractions and the theory of functions devi-

ating least from zero, OGIZ, Moscow-Leningrad, 1948 (Russian).

[9] Accelerating Fast Multipole Methods For Low Frequency Scattering L. GREENGARD, J.

HUANG, V. ROKHLIN, S. WANDZURA, IEEE Computational Science and Engineering, v.

5, No. 3, July-September 1998.

[10] N. YARVIN AND V. ROKHLIN, Generalized Gaussian Quadratures and Singular Value

Decompositions of Integral Operators, Yale University Technical Report YALEU/DCS/

RR-1109 (1996), to appear in SIAM Journal on Scientific Computing.

[11] N. YARVIN AND V. ROKHLIN, An Improved Fast Multipole Algorithm for Potential Fields

on One-Dimensional Structures, Yale University Technical Report YALEU/DCS/ RR-

1119 (1997), to appear in SIAM Journal on Numerical Analysis.

[12] N. YARVIN AND V. ROKHLIN, A Generalized One-Dimensional Fast Multipole Method

with Application to Filtering of Spherical Harmonics, Yale University Technical Report,

YALEU/DCS/RR-1142, 1998, to appear in Journal of Computational Physics.

We present a non-linear optimization procedure for the design of Generalized Gaussian
Quadratures for a fairly broad class of functions. While some of the components of the
algorithm have been published previously, we introduce an improved procedure for the
determination of an acceptable initial point for the continuation scheme that stabilizes the
Newton-type process used to find the quadratures. The resulting procedure never failed
when applied to Chebyshev systems (for which the existence and uniqueness of Generalized
Gaussian Quadratures are well-known); it also worked for many non-Chebyshev systems,
for which the Generalized Gaussian Quadratures (generally speaking) do not exist. The
performance of the algorithm is illustrated with several numerical examples; some of the
presented quadratures integrate efficiently large classes of singular functions.

Non-linear Optimization, Quadrature, and Interpolation

H. Cheng, V. Rokhlin, N. Yarvin
Research Report YALEU/DCS/RR-1169

December 17, 1998

The authors were supported in part by DARPA/AFOSR under Contract F49620/97/1/0011, in
part by ONR under Grant N00014-96-1-0188, in part by the AFOSR under Contract F49620-
97-C-0052, and in part by the AFOSR under Contract F49620-95-C-0075.
Approved for public release: distribution is unlimited.
Keywords: Non-linear Optimization, Quadratures, Singular Integrands, Interpolation.

1 Introduction

Quadrature formulae are one of the most developed areas of computational mathematics. They
are used both as a stand-alone numerical tool for the evaluation of integrals, and as an analytical
apparatus for the design of interpolation schemes, finite element schemes, etc. Most of the
quadrature formulae (at least for functions on R1) currently in use can be separated into three
groups:

1. Gaussian quadratures are the optimal tool for the evaluation of integrals of the form

f u(t) ■ P{t)dt, (1)
Ja

where P is a polynomial of t (or a function well-approximated by a polynomial), and u is a
(more or less) arbitrary non-negative function [a, b] -> R. Gaussian quadratures are extremely
efficient, mathematically elegant, and easy to obtain (see, for example [3]); whenever applicable,
they tend to be the numerical tool of choice.

2. Interpolator quadrature formulae (Newton-Cotes, etc.) are based on approximating the
integrand by some standard function (usually, a polynomial), and integrating the latter. These
schemes have the advantage that they (usually) do not prescribe the locations of the nodes;
they tend to become numerically unstable for high orders.

3. Miscellaneous special-purpose quadratures ("product integration rules", non-standard Richard-
son extrapolation, etc.) are normally used when the situation precludes the use of more straight-
forward techniques.

There appears to exist a class of situations where classical approaches fail to produce rapidly
convergent schemes. Specifically, suppose that we wish to integrate functions of the form

f>(a:).Sfc(x), (2)

where fa are smooth functions (or polynomials) mapping [0,1] -»■ R, and the functions s* :
[0,1] -> R are known apriori, and have singularities at x = 0. In many situations of interest,
the functions Sk have different singularities at x = 0, and the functions fa are not known at all;
it is only known that the integrand has the form (2), and its values at points on the interval
[0,1] can be evaluated. While efficient quadratures for functions of the form (2) would have
obvious applications in the solution of integral equations, in numerical complex analysis, and
in several other areas, the authors have failed to find such an apparatus in the literature.

It has been known for about 100 years that Gaussian quadratures admit a drastic gener-
alization, replacing polynomials with fairly general systems of functions (see [11, 12], [2, 8],
[6, 7]). The constructions found in (see [11, 12], [2, 8], [6, 7]) do not easily yield numerical
algorithms for the design of such quadrature formulae; algorithms of this type were designed
(in some cases) in [10, 15], where the resulting quadrature rules are referred to as General-
ized Gaussian Quadratures. The approach is based on the observation that the nodes and
weights of Gaussian quadratures satisfy systems of non-linear equations, that these equations

have unique solutions, and that when polynomials are replaced with other systems of functions,
similar systems of equations are easily constructed. While for functions of the form (2) the
resulting equations are non-linear, overdetermined, and non-unique, in the least squares sense
they have unique solutions under surprisingly general conditions (see [10, 15]); Newton-type
methods converge in this environment, provided a good initial approximation can be found.

As often happens, in the absence of a good initial approximation, the Newton process fails to
converge. To some extent, this problem is remedied by the use of continuation techniques, which
turn out to be almost always available when designing quadratures for integrands (2). However,
yet another problem is frequently encountered: even though mathematically the solution of the
non-linear problem is unique for all values of the continuation parameter, numerically it is
not unique at all. Once the (numerical) rank of the Jacobian of an intermediate problem
is sufficiently low, the continuation process breaks down; attempts to use globalized search
techniques have not been successful.

The final step in the design of a robust scheme for the construction of Generalized Gaussian
Quadratures is described in Section 3.3. It finds an initial approximation for which the Jacobian
of the system being solved has an acceptably low condition number. While the reasoning
behind this step is partly Heuristic, in our experience it works remarkably well. It never failed
for a Chebyshev system (see Section 2.1 below); furthermore, it worked for most of the non-
Chebyshev systems we tried it on. For a more detailed discussion of our numerical experience,
see Section 5 below, where we also present quadratures for functions with almost general power
singularities at one end (or both ends) of the interval of integration, and with several other
types of singularities.

The paper is structured as follows. Section 2 contains mathematical and numerical prelimi-
naries. In Section 3, we build the numerical apparatus to be used in Section 4 to construct the
procedure for the determination of nodes and weights of Generalized Gaussian Quadratures.
Section 5 contains several examples of quadratures we have obtained. Finally, in Section 6 we
outline several possible extensions of this work.

2 Mathematical and Numerical Preliminaries

2.1 Chebyshev systems

Definition 2.1 A sequence of functions <j>i,...,(j>n will be referred to as a Chebyshev system
on the interval [a, b] if each of them is continuous and the determinant

(3)

is nonzero for any sequence of points xi,...,xn such that a < x\ < X2.. ■ < xn < b.

An alternate definition of a Chebyshev system is that any linear combination of the functions
with nonzero coefficients must have no more than n zeros.

A related definition is that of an extended Chebyshev system.

Definition 2.2 Given a set of functions fa,..., fa which are continuously differentiable on an
interval [a,b], and given a sequence of points x\,...,xn such that a < X\ < X2 < ■ ■ ■ < xn < b,
let the sequence mi,... ,mn be defined by the formulae

mi = 0,
ruj = 0 if j > 1 and Xj ^ Xj-i, ,^\
rrij = j - 1 if j > 1 and Xj = Xj-\ = ... = x\,
rrij = k ifj>k + l and Xj = Xj-\ = ... = Xj-k / Xj-k-i ■

Let the matrix C{xu ...,xn) = [dj] be defined by the formula

Cij = dxmi
}(xj), (5)

in which $gf-(xj) is taken to be the function value <pi{xj). Then fa,..., fat will be referred to
as an extended Chebyshev system on [a, b] if the determinant \C[x\, ...,xn)\ is nonzero for all

such sequences Xj.

Remark 2.1 It is obvious from Definition 2.2 that an extended Chebyshev system is a special
case of the Chebyshev system. The additional constraint is that the successive points xt at which
the function is sampled to form the matrix may be identical; in that case, for each duplicated
point, the first corresponding column contains the function values, the second column contains
the first derivatives of the functions, the third column contains the second derivatives of the
functions, and so forth; this matrix must also be nonsingular.

Examples of Chebyshev and extended Chebyshev systems include the following (additional
examples can be found in [7]).

Example 2.1 The powers l,x,x2,.. .,xn form an extended Chebyshev system on the interval

(—00,00).

Example 2.2 The exponentials e~XlX, e~x'x,..., e~XnX form an extended Chebyshev system for
any X\,..., A„ > 0 on the interval [0,00).

Example 2.3 The functions 1, cos 1, sin x, cos 2x, sin 2x,..., cos nx, sin nx form a Chebyshev
system on the interval [0,2n).

2.2 Generalized Gaussian quadratures

The quadrature rules considered in this paper are expressions of the form

3=1

where the points Xj G R. and coefficients Wj e R are referred to as the nodes and weights of the
quadrature, respectively. They serve as approximations to integrals of the form

rb
/ fax) cdotu>(x)dx (7)

Ja

where u has the form
m

u{x) = ü{x) + £ Mj • S{x - Xj), (8)

with m a non-negative integer, w : [a, b] -> R an integrable non-negative function, xi, X2, ■ ■ •, Xm
points on the interval [a, 6], /*i, ^2, • • •, Mm positive real coefficients, and 6 the Dirac 5-function

on R.

Remark 2.2 Obviously, (8) defines u to be a linear combination of a non-negative function
with a finite collection of S-functions with positive coefficients. In a mild abuse of terminology,
throughout this paper, we will be referring to u) as a non-negative function.

Quadratures are typically chosen so that the quadrature (6) is equal to the desired integral
(7) for some set of functions, commonly polynomials of some fixed order. Of these, the classical
Gaussian quadrature rules consist of n nodes and integrate polynomials of order 2n -1 exactly.
In [10], the notion of a Gaussian quadrature was generalized as follows:

Definition 2.3 A quadrature formula will be referred to as Gaussian with respect to a set of
In functions &,... ,<fon '■ [a,b] -» R and a weight function u : [a,b] -*■ R+, if it consists of
n weights and nodes, and integrates the functions fa exactly with the weight function u for all
i = 1,..., In. The weights and nodes of a Gaussian quadrature will be referred to as Gaussian
weights and nodes respectively.

The following theorem appears to be due to Markov [11, 12]; proofs of it can also be found
in [8] and [7] (in a somewhat different form).

Theorem 2.1 Suppose that the functions <j>u...,<f>2n:[a,b]->R form a Chebyshev system on
[a,b]. Suppose in addition that w : [a,b] -»• R is defined by (8), and that either

L
b

ü{x)dx > 0, (9)

or m> n (or both). Then there exists a unique Gaussian quadrature for <f>i,..., <fon on [a, b]
with respect to the weight function u. The weights of this quadrature are positive.

2.3 Quadrature and Interpolation

As is well-known, when Gaussian nodes on the interval [-1,1] are used for interpolation (for
example, via the Lagrange formula), the resulting procedure is numerically stable. Furthermore,
the precision obtained via Gaussian (Lagrange) interpolation is almost as high as that obtained
via Chebyshev interpolation (see, for example, [4]). Generally, given a weight function w, the
nodes of Gaussian quadratures corresponding to u lead to interpolation formulae that are stable
in an appropriately chosen norm. In this subsection, we formalize this fact for both Gaussian
and many Generalized Gaussian quadratures. The analytical tool of this subsection is the
following obvious theorem.

Theorem 2.2 Suppose that the function u : [a,b] -> R. is non-negative, and the functions
<t>i, <h, • • •. 0n : [a, b] ->■ R. are orthonormal with respect to the weight function u, i.e.

f u{x) ■ 4>j{x) ■ <t>i{x)dx = Sij (10)
Ja

for all i,j = 1,2,...,n (Sij denotes Kroneker's 6-function). Suppose further that the n-point
quadrature rule xi,x2,...,xn, wuw2,... ,wn, is such that Wi > 0 for all 1 < i < n. Finally,

suppose that
n

fc=l

for all i, j = 1,2,... ,n. Then the n x n-matrix A defined by the formula

Aij = y/Wj ■ 4>i{xj), (12)

is orthogonal.

Suppose now that we would like to construct an interpolation formula on the interval [a, b)

for functions of the form n

/(*) = £>■*(*), (13)
»=i

with ai,a2,...,an arbitrary real coefficients. In other words, suppose that we are given the
values /i, /2, • ■ •, /n of a function / at a collection of points xx, x2,..., xn, and that it is known
that / is defined by the formula (13), but the coefficients aua2,. ■■ ,an are not known; we
would like to be able to evaluate / at arbitrary points on [a, b]. The obvious way to do so is to
observe that the values /i, f2,..., /„ are linear functions of the coefficients ax, a2,..., a„ (due
to (13)); evaluating (13) at the points xux2,... ,xn, we obtain the system of equations

n

/i = X> •*(**)■ (14)
i=l

with j = 1,2,..., n. Defining the n x n-matrix B by the formula

bjti = cfiiixj), (15)

we rewrite (14) in the form
F = Ba, (16)

with the vectors a, F G Rn defined by the formulae

a = (ai,a2,...,an), (17)

F = (h,f2,...,fn). (18)

Now, as long as the matrix B is non-singular, we can evaluate the coefficients a\,a2,...,an

via the formula
a = B~lF, (19)

and use (13) to evaluate / at arbitrary points on [a,b]. Of course, in actual numerical calcula-
tions, it is not sufficient for B to be invertible; its condition number must not be too high. The
following observation is the principal purpose of this subsection.

Observation 2.3 Under the conditions of Theorem 2.2,

A = DoB, (20)

with D the diagonal matrix defined by the formula

Di* = v^i, (21)

and
a = A'DF (22)

(due to the combination of (19) with (20)). In other words, given the table of values /i, /2,.. •, fn

of the function f at the nodes xux2,..., x„, one obtains the coefficients of the expansion (13) by
applying to the vector F the product of two matrices; the first of these matrices is orthogonal, and
the second is diagonal; the diagonal elements of the latter are square roots of (positive) weights
of the n-point quadrature formula exact for all pairwise products of the functions <j)\, <fa,..., <£„•

Remark 2.4 While at first glance the above observation appears to be very limited in its scope
(since it relies on the quadrature formula being exact for all pairwise products of the functions
<t>uh,---: <f>n), in reality it means that whenever the nodes of a Generalized Gaussian quadrature
formula are used as interpolation nodes, the resulting interpolation formula tends to be stable.
The reason for this happy coincidence is the fact that the matrix A (see (12) above)) need not
be orthogonal for the stability of the interpolation formula; it only needs to be well-conditioned.
Thus, as long as the quadrature formula is reasonably accurate for all pairwise products of
the functions <j>u<fa,...,(l>n, the matrix A is close to being orthogonal; therefore, the condition
number of A is close to unity, and the interpolation based on the nodes xi,X2,.--,xn is stable.

2.4 Convergence of Newton's method

In this section, we observe that the nodes and the weights of a Gaussian quadrature satisfy a
simple system of nonlinear equations. We then prove that the Newton method for this system of
equations is always quadratically convergent, provided the functions to be integrated constitute
an extended Chebyshev system.

Given a set of functions <j>\,..., <fon and a weight function u, the Gaussian quadrature is
defined by the system of equations

n »ft

J^wj ■ Mxj) = / <f>i(x) ■ u{x)dx,

n ,6
^2wj-fa(xj) = / <h(*) ■ v(x)dx,

. Ja

n ,fc

^VJj • <hn(Xj) = / <hn{x) * U{x)dx, (23)
j=l Ja

(see Definition 2.3). Let the left hand sides of these equations be denoted by /i through /2„.
Then each fc is a function of the weights «n,..., wn and nodes xx,..., xn of the quadrature.
Its partial derivatives are given by the obvious formulae

f^ = &(*), (24) awi

§£ = «*■ #(*)■ (25)
Thus, the Jacobian matrix of the system (23) is

/ Mxl) ■■• 4>lM «>i#(&i) ••• ™n(f>l{xn) >

J(xi,...,xn,wu...,wn)=\ : i i : • (26)

V <M*l) '•• <M*n) U>l$n(*l) •/• «;„<&„(!„) /

Lemma 2.3 Suppose that the functions <f>i,...,(hn form an extended Chebyshev system. Let
the Gaussian quadrature for these functions be denoted by W{ and Zj. Then the determi-
nant of J is nonzero at the point which constitutes the Gaussian quadrature; in other words,

\J(xu...,xn,wi,...,wn)\ 7^0.

Proof. It is immediately obvious from (26) that

|J(xi,...,Xn,t&l,...,«>n)| =

Wi ■ t&2 «>n-l • Wn (27)

<hn(Zl) ■■■ <hn(£n) 4>2n(xl) "• 02n(Än)

If </>i,..., 02n form an extended Chebyshev system, then by Theorem 2.1, the weights wu..., wn

of the Gaussian quadrature are positive. In addition, by the definition of an extended Chebyshev
system, the determinant in the right hand side of (27) is nonzero. Thus

|J(xi,...,x„,u>i>...>tS„)|^0. (28)

D

Using the inverse function theorem, we immediately obtain the following corollary:

Corollary 2.4 Under the conditions of Lemma 2.3, the Gaussian weights and nodes depend
continuously on the weight function.

2.5 Singular value decomposition

The singular value decomposition (SVD) is a ubiquitous tool in numerical analysis, given for
the case of real matrices by the following lemma (see, for instance, [13] for more details).

Lemma 2.5 For any nxm real matrix A, there exist, for some integer p, annxp real matrix
U with orthonormal columns, anmxp real matrix V with orthonormal columns, and apxp
real diagonal matrix S = [sy] whose diagonal entries are non-negative, such that A = U-S-V*
and that su > Sj+i^+i for all i = 1,... ,p — 1.

The diagonal entries su of S are called singular values; the columns of the matrix V are
called right singular vectors; the columns of the matrix U are called left singular vectors.

2.6 Singular value decomposition of a sequence of functions

A similar decomposition exists (see [5, 16]) if the columns of the matrix A are replaced by
functions:

Theorem 2.6 Suppose that the functions <£i,<fo,...,</>n : [a,&] -+ & are square integrable.
Then there exist a finite orthonormal sequence of functions «i, u2,..., «p : [a, b] -¥ R, annxp
matrix V — [vy] with orthonormal columns, and a sequence si > S2 > ■■■ > sp > 0 E R, for
some integer p, such that

p

<f>j(x) = £«i(aO*i«tf» (29)

for all x E [a,b] and allj = l,...,n. The sequence {s{} is uniquely determined by K.

By analogy to the finite-dimensional case, we refer to this factorization as the singular value
decomposition. We refer to the functions {u;} as singular functions, to the columns of the
matrix V as singular vectors, and to the numbers {si} as singular values.

A popular application of the Singular Value Decomposition is for the purpose of "compress-
ing" data. Specifically, it often happens that while the total number n of functions is large,
almost all of the coefficients Sj in the decomposition (29) are negligibly small. In such cases,
(29) is truncated after a small number (say, po) of terms, and the resulting expansion

PO

is viewed as a compact representation of the original family of functions <f>i,<fa.---,<l>n-
The following theorem states that given a sequence of functions on the interval [a, b], their

decomposition of the form (30), and a quadrature formula with positive weights on the interval
[a, 6], the accuracy of the quadrature for the functions 0i, fa, ■ ■ ■, <f>n is determined by its accu-
racy for the singular functions u,-, corresponding to non-trivial singular values. Its proof is an
exercise in elementary linear algebra, and is omitted.

Theorem 2.7 Suppose that under the conditions of Theorem 2.6, e is a positive real number,
1 <po <n is an integer, and

t -?<f (3D
t=po+l

Suppose further that the m-point quadrature formula {li, Wi} integrates the functions u» exactly,
i.e.

y]wj ■ Ui(xj) = Ui(x) dx (32)

for all i = 1,2,...,po, and that all of the weights wi,...,wm are positive. Then for each
i = 1,2,. ..,n,

Y,Wj ■ (f>i(xj) - / 4>i{x) dx <e-\\<f>i\\L2. (33)

3 Numerical Apparatus

3.1 Continuation method

In order for Newton's method to converge, the starting point provided to it must be close to the
desired solution. One scheme for generating such starting points is the continuation method,

described below.
Suppose that in addition to the function F : 5tn -> Rn whose zero is to be found, another

function G : [0,1] x Rn -)• R" is available which possesses the following properties:

• 1. For any x G Btn,
G(l,x)=F(x). (34)

• 2. The solution of the equation
G(0,z)=0 (35)

is known.

• 3. For all t E [0,1], the equation
G(t,x)=0 (36)

has a unique solution x at which the conditions for Newton's method to converge are
satisfied.

• 4. The solution x is a continuous function of t.

If these conditions are met, an algorithm for the solution of the equation

F(x) = 0 (37)

is as follows. Let the points U, for i = 1,..., m, be defined by the formula U = i/m. Solve in
succession the equations

G(tux) = 0,

G{t2,x) = 0,

G(tm,x) = 0 (38)

using Newton's method, with the starting point for Newton's method for each equation taken
to be the solution of the preceding equation. Due to (34), the solution x of the final equation
G{tm,x) = 0 is identical to the solution of (37); obviously, for sufficiently large m, Newton's
method is guaranteed to converge at each step.

Remark 3.1 In practice, it is desirable to choose the smallest m for which the above algorithm
will work, in order to reduce the computational cost of the scheme. On the other hand, the largest
step (U — tj_i) for which the Newton method will converge commonly varies as a function oft.
Thus the algorithm described in this paper uses an adaptive version of the scheme.

10

3.2 Continuation scheme

The continuation scheme used is as follows. Let the weight functions u>: [0,1] x [a, b] -> R+ be
defined by the formula

n

u{a, x) = aui(i) + (1 - a) £ 6{x - Cj), (39)
j=i

where u>i is the weight function for which a Gaussian quadrature is desired, 6 denotes the Dirac
delta function, and the points Cj e [a, b] are arbitrary distinct points. These weight functions
have the following properties:

• 1. With a = 1, the weight function is equal to the desired weight function u>i, due to

(39).

• 2. With a = 0, the Gaussian weights and nodes are

wj = 1, (40)

Xj = CJ, (41)

for j = 1,..., n, whatever the functions fa are (since w(0, x) = 0, unless x = Cj for some

J6[l,n]).

• 3. The quadrature weights and nodes depend continuously on a (by Corollary 2.4).

The intermediate problems which the continuation method solves are the Gaussian quadratures
relative to the weight functions u)(a,*). The scheme starts by setting a = 0, then increases a
in an adaptive manner until a = 1, as follows. A current step size is maintained, by which a
is incremented after each successful termination of Newton's method. After each unsuccessful
termination of Newton's method, the step size is halved and the algorithm restarts from the
point yielded by the last successful termination. After a certain number of successful steps, the
current step size is doubled. (Experimentally, the current problem was found to be well suited
to an aggressive mode of adaption: in the authors' implementation, the initial value of the step
size was chosen to be 0.5, and the step size was doubled after two successful terminations of
Newton's method.)

3.3 Starting points

The choice of the points c,- was left indefinite above. In exact arithmetic, and applied to a
Chebyshev system, the algorithm would converge for any choice of distinct points (see Lemma
2.3). However, the number of steps of the continuation method, and thus the speed of execution,
is affected by the choice. More importantly, the numerical stability of the scheme might be
compromised due to poor conditioning of the matrix J (see (26)). Indeed, while Lemma 2.3
guarantees that the matrix J is non-singular, it says nothing about its condition number. In
addition, we will be applying the algorithm to cases where the conditions of Lemma 2.3 are not
satisfied. For these reasons, the following method of choosing the starting points was adopted.
The method seeks to create a matrix J that is well-conditioned. It is a pivoted Gram-Schmidt
orthogonalization, altered to operate on pairs of vectors:

11

. 1. Choose a set of points xu x2,..., xm on the interval of integration [a, b], such that each
of the functions tufa-,*», and each of their derivatives, can be interpolated on [a, 6j
in a well-conditioned manner from values at these points.

. 2 Create a matrix J, of the same form as (26), where the points {Xj} which determine
the columns are the points chosen in step 1. (This matrix thus has 2m columns.)

• 3. Perform the following sequence of operations n times:

- a) choose the point Xj for which the two columns corresponding to x, have the largest
size. (The issue of what "size"to use is discussed below.)

- b) orthogonalize the remaining columns to both of those two columns.

The points Xj chosen in step (3a) are then the starting points Cj used in the continuation

method. , .
The algorithm as specified above is for exact arithmetic. As with Gram-Schmidt, the al-

gorithm is numerically unstable, but can be stabilized by an additional re-orthogonahzation:
after step (3a), re-orthogonalize the two new pivot columns to all of the previously chosen pivot

columns.

Remark 3.2 The "size of two columns" that was used for step (3a) is the sum of the norms of
the columns, after the second column has been orthogonalized to the first. This poses the obvious
danger that one of the two columns chosen might have a small norm, which was covered up by
a large norm of its companion. This would render it unsuitable for pivoting; this danger was
never realized in our numerical experiments, but if it were, the obvious remedy would be to
attempt to change the definition of the "size". The authors have not investigated this issue in

detail.

3.4 Nested Legendre discretizations of finite sequences of functions

In this paper, we will be confronted with finite sequences of functions fa, fa,.. -fa on the
interval [a, b], possessing the following properties:

• 1. The total number n of functions fa is reasonably large (e.g. 10000).

• 2. The rank of the set fa, fa, ■ • ■ <f>n, is low (e.g. 40), to high precision.

• 3. Each of the functions fa, fa,... fa is analytic on the interval [a, 6], except at a finite
(small) number of points; fa G L^a, b] for all t = 1,2,..., n.

Now, if we wish to handle (interpolate, integrate, differentiate, etc.) numerically functions

of the form n

#*) = X>-&, (42)
i=l

often it is not convenient to represent them by collections of coefficients aua2, ...an. Indeed,
if the functions fa, fa, ■ ■ ■ <S>n are linearly dependent, the number of coefficients a{ necessary to

12

represent them in the form (42) might be grossly excessive, compared to the actual complexity
of the function to be represented. Furthermore, the coefficients c*i by themselves provide no
mechanism for the integration, interpolation, etc. of functions of the form (42); each time such
procedures have to be performed, one has to recompute the original functions fa, fa,...4>n.
Since the latter is often expensive or impossible, it is desirable to have a purely numerical pro-
cedure for representing sums of the form (42). Preferably, the scheme should use no information
about the functions fa, except for their values at a finite (preferably, not very large) collection
of points on [a,b].

When the functions fa are smooth, a widely used tool for representing them is Chebyshev
interpolation: a sufficiently large integer m is chosen, the functions fa, fa,... <f>n are tabulated at
m Chebyshev nodes on [a, 6], and obtained at all other points on [a, b] via standard interpolation
procedures. While Chebyshev nodes are an extremely good choice, they are not the only
one; for example, Gaussian (Legendre) nodes are almost as efficient as the Chebyshev ones
when the functions are to be interpolated, and twice as efficient when the functions are to be
integrated (see, for example, [4]). When the behavior of the functions fa is very non-uniform
over the interval [a, b], Chebyshev (Gaussian, etc.) interpolation becomes inefficient; for singular
functions it is liable to fail completely. In such cases, adaptive Chebyshev interpolation is used,
whereby the interval is subdivided into a collection of subintervals, so that on each subinterval,
all of the functions fa are accurately approximated by a Chebyshev expansion of low order;
needless to say, most of the time, such subdivisions are performed automatically. When some
(or all) of the functions fa have singularities on the interval [a, b], schemes of this type cluster
the subintervals near each singularity, until the subinterval nearest to the singularity is so small
as to be ignorable for the purposes of the calculations to be performed.

In the first stage of the algorithm we use, we build a nested Chebyshev discretization of the
interval [a,b] for each of the functions fa. In the second stage, all such discretizations are merged
to obtain a single discretization by which all of the functions fa are adequately represented. In
the third stage, n Legendre nodes are constructed on each of the obtained intervals.

Stage 1

• 1. Choose the precision e and some reasonably large m (in actual computations, we use
m = 16).

• 2. Construct the m Chebyshev nodes x^ , x^' , • •., Zm , on the interval [a, b]. Evaluate

4> at the nodes x^' , xjf' , • • •, %' , obtaining the values <fr*' , 4°' , ■ •., <f>m •

• 3. Subdivide the interval [a, b] into the subintervals [a, (a + b)/2], [{a + b)/2,b\. Construct

the Chebyshev nodes x
[?'{a+b)/2], s!,a,(a+6)/2], ..., x&,(a+6)/2] on the interval [a, (a + 6)/2],

and the Chebyshev nodes a;(/0+6>/2'6], xf
+h)l2'b\ ..., xka+6)/2,6] on the interval [{a+b)/2, b].

Evaluate the function <f> at the nodes x
[^a+b)/2\ xWa+6)/2], ..., xWa+b)/2\ x[}a+b)/2'b],

Xf+W*\ ..., x[La+6)/2'6], obtaining the values ^-+*M rff.<-+*W ..., <ft'{a+b)/2\
^)Aflf 4('+6)/2,6]j .iit4i+»)/W] respectively.

• 4. Interpolate the values of the function <f> from the nodes Xj , x% , ..., %' , on the

interval [a,b] to the nodes xW^«, 4^*+*^, ..., x^
a+b)/2], *[<•*>A«, xf+b)'2'b\

13

..., xl^+b)/2M on the intervals [a,(a + b)/2], [(a + b)/2,b]. If the interpolated values
.xL • • -4.U a i j>.(a+6)/2] .[a,(a+b)/2] ,[a,(a+6)/2] ,[(a+6)/2,6]

agree to the precision c with the values <p\ 'K , <P2 ,---,<Pm , <p\ ,

4(o+6)/2'6], ..., 4r+6)/2'6] calculated directly in Step 2 above, the algorithm concludes
that the function <f> is adequately resolved by the m Chebyshev nodes on the interval [a, b};

otherwise, the procedure is repeated recursively for each of the subintervals [a, (a + b)/2],

[(a + b)/2,b).

Stage 2

• 1. Store the ends (left and right) of all subintervals in all subdivisions in a single array
a. Sort the elements of a; remove multiple elements in a. The resulting array of points
on the interval [a, b] (including the points a, b) is the array of ends of subintervals of the
final subdivision.

Stage 3

• 1. Construct an m-point Legendre discretization of each of the subintervals obtained in
Stage 2 above.

Remark 3.3 In the algorithm above, we use Chebyshev discretizations in Stage 1 to construct
the subdivision of the interval [a,b]; in subsequent calculations we use Legendre discretizations.
The reason for this choice is that the interpolations in Stage 1 are carried out more efficiently
with Chebyshev discretizations, via the Discrete Cosine Transform and related tools; the Leg-
endre discretizations used subsequently lead to linear interpolation schemes that preserve inner
products (see following subsection).

Remark 3.4 The scheme of this subsection is a fairly reliable apparatus for the automatic
discretization of sets of (more or less) arbitrary user-specified functions. While it is very easy
to construct counterexamples in which the algorithm will fail to resolve some (or all) of the
input functions, this problem has never been encountered in our practice.

3.5 Approximation of SVD of a sequence of functions

This section describes a numerical procedure for computing an approximation to the singular
value decomposition of a sequence of functions. The algorithm uses quadratures possessing the
following property.

Definition 3.1 We will say that the combination of a quadrature and an interpolation scheme
preserves inner products on an interval [a, b] if it possesses the following properties.

• 1. The nodes of the quadrature are identical to the nodes of the interpolation scheme.

• 2. The function which is output by the interpolation scheme depends in a linear fashion
on the values input to the interpolation scheme.

14

3 The quadrature integrates exactly any product of two interpolated functions; that is,
for any two functions f,g : [a,b] -4 R produced by the interpolation scheme, the integral

f Ja
f(x) ■ g(x)dx (43)

is computed exactly by the quadrature.

Quadratures and interpolation schemes possessing this property include:

Example 3.1 The combination of a (classical) Gaussian quadrature at Legendre nodes and
polynomial interpolation at the same nodes preserves inner products, since polynomial interpo-
lation on n nodes produces an interpolating polynomial of order n-1, the product of two such
polynomials is a polynomial of order In - 2, and a Gaussian quadrature integrates exactly all

polynomials up to order 2n — 1.

Example 3.2 If an interval is broken into several subintervals, and a quadrature and inter-
polation scheme preserving inner products is used on each subinterval, then the arrangement
as a whole preserves inner products on the original interval. (This follows directly from the

definition.)

Example 3.3 The combination of the trapezoidal rule on the interval [0,2ir], and Fourier in-
terpolation (using the interpolation functions 1, cos x, sinx, cos 2x, sin2x,..., cos nx, sinnx) pre-

serves inner products.

The algorithm described below takes as input a sequence of functions fa, fa, ■ ■ ■, <f>n ■ [a, b] ->•
Bt. It uses as a tool a quadrature and a linear interpolation scheme on the interval [a, b] preserv-
ing inner products; the weights and nodes of this quadrature will be denoted by Wi,..., u>B e R
and xi,... ,xn e [a,b] respectively. As will be shown below, the accuracy of the algorithm is
then determined by the accuracy to which the interpolation scheme approximates the functions

fa, fa, •■• , Yn-
The output of the algorithm is a sequence of functions m,..., up : [a, b] -»• R, a sequence of

vectors vu..., vp € R
n, and a sequence of singular values su • • •, sp G R, forming an approxi-

mation to the singular value decomposition of fa, fa, ■.., <£n-
Description of the algorithm:

• 1. Construct the n x m matrix A = [oij] defined by the formula

aij^faixi)-^. (44)

• 2. Compute the singular value decomposition of A, to produce the factorization

A = UoSoV*, (45)

where U = [uij] is an n x p matrix with orthonormal columns, V = [t»y] is an m x p
matrix with orthonormal columns, and S is a p x p diagonal matrix whose j'th diagonal

entry is Sj.

15

• 3. Construct the n xp values Uk{x{) defined by

Uk(Xi) = Uik/y/Wi- (46)

• 4. For any desired point x € [a, 6], evaluate the functions u* : [a,b] -»• R using the
interpolation scheme on [a, b].

The proof of the following theorem can be found (in a considerably more general form) in

[15].

Theorem 3.1 Suppose that the combination of the quadrature and interpolation scheme with
weights and nodes toi,... ,wn € R and xi,...,xn e[a,b], respectively, preserves inner products
on [a,b]. For any function K : [a,6] x [c,d] -»• R, let Uj : [a,b] -* R, v{j G R, and si E R be

defined in (44)-(46)> for °U * = 1, • • • ,P- T/ien

• 1. The functions U{ are orthonormal, i.e.

tb
\ Ui{x)uk(x)dx = 6ik (47)

Ja

for all i,k = 1,... ,p, with Oik the Kronecker symbol.

• 2. The columns of V are orthonormal, i.e.

n
Y^ vijVkjdx = 5ik (48)
i=i

for all i,k = 1,... ,p.

• 3. The sequence of functions <f>\, <fe,..., <£„ : [a, b] —> R defined by

i>k(x) = J2 SJUJ (x)vJk i (49)
J'=l

ts identical to the sequence of functions produced by sampling the functions <f>\, fe, • ■ ■, <f>n

at the points {xi}, then interpolating with the interpolation scheme on [a,b].

4 Numerical Algorithm

This section describes a numerical algorithm for the evaluation of nodes and weights of gener-
alized Gaussian quadratures. The algorithm's input are a sequence of functions <pi,.. .,<fa>n '•
[a, b] -4 R, and the precision c to which the quadratures are to be calculated; its output is the
weights and nodes of the quadrature. The functions fa are supplied by the user in the form of
a subroutine, with input parameters (x,i), and output parameter <j>i(x). The algorithm uses
the components described the preceding section.

• 1. The interval [a, 6] is discretized via the scheme described in Subsection 3.4, so that all
functions 0i, fa, ■ ■ ■, 4>n are represented to the precision e.

16

• 2. All of the functions fa, fa,..., fa are tabulated at the nodes of the discretization
obtained in p. 1 above, and the Singular Value Decomposition is obtained of the sequence
of functions fa, fa, ■ ■ ■, fa via the scheme described in Subsection 3.5; we will be denoting
the obtained singular values by Ai, A2, -.. .

• 3. Denoting by k the positive integer number such that A2.fc+i < e < \2.k-1, we observe
that any quadrature formulae with positive coefficients that integrates the obtained sin-
gular functions t»i, U2,... «2fc exactly, will integrate all of the functions fa, fa,..., fa
with precision e (see Theorem 2.7 in Subsection 2.5). The remainder of the algorithm is
devoted to constructing a fc-point quadrature formula that will integrate the functions «i,
«2, • • • y-2-k exactly.

• 4. The scheme of Subsection 3.3 is used to find the starting nodes x\,X2, ...,x\ for the
continuation process of Subsection 3.2.

• 5. An adaptive version of the continuation method of Subsection 3.2 is used to obtain the
Ä-point quadrature for the functions «1, U2,..., tt2jfci on each step, the Newton algorithm
described in Subsection 2.4 is used to solve the system (23) defining the nodes and roots
of the quadrature formula.

Remark 4.1 We would like to reiterate that the quadrature formulae produced by the procedure
of this section do not integrate the user-specified functions fa, fa,..., fa exactly; instead, they
produce approximations to the integrals. Needless to say, the two are indistinguishable, as long
as the chosen precision e is less than the machine precision.

5 Numerical examples

A variety of quadratures were generated via the algorithm of this paper; several of these are
presented below to illustrate its performance. In Examples 5.1, 5.2, the calculations were
performed in extended precision (Fortran REAL*16) arithmetic, to assure full double precision
in the obtained result. In Example 5.3, the calculations were performed in double precision,
since the accuracy of the quadrature listed in Table 5 is only 9 digits.

Example 5.1 An obvious problem of interest is the integration on an interval of functions
that have a singularity at one end of that interval (or at both ends); of particular interest are
power and logarithmic singularities. Many techniques have been proposed for dealing with such
problems (see, for example, [1]). While some of these approaches are quite effective for some
of the singularities, they have the drawback that each of them only deals with one particular
singularity. In this example, we present quadrature rules for the integration of functions of the
form

n m

£(7* • log(x) 4- £ ßkJ ■ xa*) ■ Pk(x) (50)
Jfc=0 j=l

where Pk denotes the (normalized) orthogonal polynomial of order A; on the interval [0,1], ßkj,
7jt are arbitrary real numbers, and aj are arbitrary real numbers on the interval [—0.6,1].

17

Table 1: 16-node quadrature for functions of the form (50), with a 6 [-0.6,1], N

precision 10~15

= 4, and

0.1646476245461994E-18
0.2004881755033198E-13
0.4902407997203263E-10
0.1396853977847601E-07
0.9715236454504147E-06
0.2502196135803993E-04
0.3120851149673110E-03
0.2264576163994000E-02
0.1086917746927712E-01
0.3777218640280392E-01
0.1013279037973986E+00
0.2196196157836697E+00
0.3972680999338400E+00
0.6135562966157080E+00
0.8216868417553706E+00
0.9636466562372551E+00

Wi

0.2477997131959177E-17
0.1863311166024058E-12
0.3215991324579055E-09
0.6788563189534853E-07
0.3586206403622012E-05
0.7130636866829449E-04
0.6951436010759356E-03
0.3979838127986921E-02
0.1515746778330600E-01
0.4182483334409624E-01
0.8854031057518543E-01
0.1490380907486389E+00
0.2028312538451011E+00
0.2216836945000430E+00
0.1844567448110479E+00
0.9171766188102896E-01

In order to design such quadratures, we choose a reasonably large natural m, construct m
Legendre nodes au a2, ■.., am, on the interval [-0.6,1], and use all functions of the forms

(51) Pk(x) xa*

Pk(x) ■log{x) (52)

as input functions <fc for the algorithm of the preceding section. The result is a set quadratures
for functions of the forms (51), (52). A somewhat involved analytical calculation shows that
for sufficiently large m, the obtained quadratures will work for all functions of the form (50),
and our numerical experiments show that m = 100 insures full double precision accuracy for

all aje [-0.6,1].
In Tables 1 - 5, we list quadrature nodes and weights for n = 4,9,19,29. In Tables 1, 3,

4, 5, the number of nodes is chosen to guarantee 15-digit accuracy. In Table 2, the number of
nodes is chosen to guarantee 7 digits.

Example 5.2 The quadrature rules in this example are very similar to those in Example 5.1,
except here we construct quadrature rules for functions singular at both ends of the interval
where they are to be integrated. Specifically, integrands have the form

n m

Jb=0 j=l

18

Table 4: 26-node quadrature for functions of the form (50), with a G [-0.6,1], N = 19, and
precision 10~15

Xi Wi

0.2852686209735951E-20
0.4655349788609637E-15
0.1432147899313873E-11
0.4915792345704672E-09
0.3986884553883893E-07
0.1168849078081257E-05
0.1630549221175312E-04
0.1307331567674635E-03
0.6884061227847875E-03
0.2620448293548410E-02
0.7740029188833982E-02
0.1872452403074940E-01
0.3869460001276389E-01
0.7058074961479188E-01
0.1165353335503884E+00
0.1775282580420220E+00
0.2531447462199369E+00
0.3415558481256653E+00
0.4396281348394975E+00
0.5431447278197111E+00
0.6471126706707170E+00
0.7461308154896283E+00
0.8347900655356778E+00
0.9080759999882411E+00
0.9617441758037388E+00
0.9926478556999123E+00

0.4390385492743041E-19
0.444588U89691443E-14
0.9689649973398580E-11
0.2471786670704959E-08
0.1527652265503579E-06
0.3470933550491954E-05
0.3803166416108812E-04
0.2422240257088061E-03
0.1022568448159836E-02
0.3143745934305781E-02
0.7549238041954824E-02
0.1495112040361046E-01
0.2548756008178511E-01
0.3865021281644121E-01
0.5342389042306681E-01
0.6849323863305738E-01
0.8243302008328313E-01
0.9386320384208941E-01
0.1015733726852001E+00
0.1046214551363520E+00
0.1024074963963311E+00
0.9472049436813551E-01
0.8175595131244442E-01
0.6410309004863602E-01
0.4270384642243640E-01
0.1881261305258270E-01

20

Table 5: 36-node quadrature for functions of the form (50), with a e [-0.6,1], N = 39, and
precision 10-15

Xi Wi

0.1174238417413926E-19
0.1422439193737780E-14
0.3350676698582048E-11
0.8987762100979194E-09
0.5804062676082615E-07
0.1381879982602796E-05
0.1599014834456195E-04
0.1086072834052024E-03
0.4939690780979653E-03
0.1653457719227906E-02
0.4371083474213578E-02
0.9635942477742897E-02
0.1847241513238332E-01
0.3179190367214565E-01
0.5030636405050507E-01
0.7449442868952319E-01
0.1045979502135202E+00
0.1406326475828715E+00
0.1824044449022998E+00
0.2295280679235570E+00
0.2814468220422235E+00
0.3374533767644982E+00
0.3967116179369689E+00
0.4582796041927400E+00
0.5211335571597729E+00
0.5841926980689389E+00
0.6463446423449487E+00
0.7064709858680002E+00
0.7634726623238107E+00
0.8162946187294954E+00
0.8639493438008133E+00
0.9055387898384755E+00
0.9402742542357631E+00
0.9674938463383342E+00
0.9866773942995437E+00
0.9974613070359063E+00

0.1769042596381234E-18
0.1318732300270049E-13
0.2181187238172082E-10
0.4306047388907762E-08
0.2097251047066944E-06
0.3830347070073085E-05
0.3447814965093908E-04
0.1843012333973045E-03
0.6658876227138618E-03
0.1785581170381193E-02
0.3817614649487054E-02
0.6885390581283880E-02
0.1094085630140653E-01
0.1581728538518057E-01
0.2129142636454853E-01
0.2712481569656370E-01
0.3308456773919071E-01
0.3895216905306892E-01
0.4452688339606666E-01
0.4962723403902098E-01
0.5409202169130247E-01
0.5778135262022458E-01
0.6057773920656186E-01
0.6238718893653459E-01
0.6314016307782669E-01
0.6279229386348975E-01
0.6132477029316637E-01
0.5874432665998542E-01
0.5508279084756487E-01
0.5039617034177984E-01
0.4476327290202123E-01
0.3828387702474601E-01
0.3107648956468336E-01
0.2327578565976658E-01
0.1503024417658587E-01
0.6508977351752366E-02

21

Table 6: 22-node quadrature for functions of the form (53), with a E [-0.1,1], N = 4, and
precision 10~15

±Xj m
0.1666008119316040E+00
0.4736467937561296E+00
0.7129463900017805E+00
0.8687173264995090E+00
0.9515411665787298E+00
0.9862971262509680E+00
0.9972429072629104E+00
0.9996464539418006E+00
0.9999757993153293E+00
0.9999993605804343E+00
0.9999999970230195E+00

0.3286464553329054E+00
0.2782402062916909E+00
0.1977249261400840E+00
0.1158087624474726E+00
0.5425992604604305E-01
0.1943874113675287E-01
0.4979788483749470E-02
0.8238003428108275E-03
0.7462712208720397E-04
0.2746237603563529E-05
0.2041880191195951E-07

where P* denotes the (normalized) orthogonal polynomial of order k on the interval [—1,1],
o-kj, hj, Ck, dk are arbitrary real numbers, and atj are arbitrary real numbers on the interval
[-0.1,1]. Quadrature nodes and weights for n = 4,9,19,39 are listed in Tables 6, 7, 8, 9
respectively; in all cases, the precision is 10"15.

Example 5.3 In this example, we construct a direct generalization of quadratures constructed
in Example 5.1, permitting the integrands to have power and logarithmic singularities at ar-
bitrary points on the closed half-line to the left of the interval of integration. Specifically,
integrands have the form

fc=0 j=l

(54)

where P* denotes the (normalized) orthogonal polynomial of order k on the interval [0,1], ßkj,
7*; are arbitrary real numbers, ctj are arbitrary real numbers on the interval [—0.65,1], and h
is an arbitrary positive real number. In this case, the calculations were conducted in double
precision; the 38-node quadrature formula for n = 19 is listed in Table 10; its precision is 10~9.

Several observations can be made from the tables 1-8, and from the more detailed numerical
experiments we have conducted.

• 1. The algorithm of this paper is always effective for Chebyshev systems; it almost always
works for non-Chebyshev ones.

• 2. The scheme does not lose very many digits compared to the machine precision; when
the calculations are performed in double precision, the quadratures can be obtained to 11
or 12 digits; the accuracy of quadratures in Tables 1-8 is full double precision; we used
extended precision arithmetic in FORTRAN to obtain them.

22

Table 7: 27-node quadrature for functions of the form (53), with a G [-0.1,1], N = 9, and
precision 10-15

±Xi W{

O.00OOOOO000000O0OE+00
0.1953889665467211E+00
0.3814298736462841E+00
0.5496484616443740E+00
0.6932613279607421E+00
0.8078808016610349E+00
0.8920478424190657E+00
0.9475053154471952E+00
0.9790448975739819E+00
0.9936444652327659E+00
0.9986936386311707E+00
0.9998477986092101E+00
0.9999927156219827E+00
0.9999999335937359E+00

0.1969765126094452E+00
0.1922287111905558E+00
0.1784269782500965E+00
0.1568677485350913E+00
0.1296176364576521E+00
0.9937321489137896E-01
0.6925317917837661E-01
0.4247396818782292E-01
0.2179872525134398E-01
0.8672220251831163E-02
0.2388475528070173E-02
0.3837648653769931E-03
0.2671422777541431E-04
0.4068798910349743E-06

Table 8: 33-node quadrature for functions of the form (53), with a € [-0.1,1], N = 19, and
precision 10~15

±Xi Wi

O.O0000OOO0000O0O0E+00
0.1789856568226836E+00
0.3505713663705831E+00
0.5079970396268890E+00
0.6457344058749438E+00
0.7599840782344723E+00
0.8490304782768580E+00
0.9134021329241244E+00
0.9557717316319267E+00
0.9805181730564275E+00
0.9929045523533901E+00
0.9979798758935006E+00
0.9995837651123616E+00
0.9999445617386989E+00
0.9999960165362139E+00
0.9999998889650372E+00
0.9999999994557687E+00

0.1802406542699465E+00
0.1764865559769247E+00
0.1655482040246752E+00
0.1483733690643724E+00
0.1264620956535221E+00
0.1017484935648103E+00
0.7643386171408831E-01
0.5276203409291129E-01
0.3272086426808218E-01
0.1766845539228831E-01
0.7963812531655223E-02
0.2833884283485953E-02
0.7387521680930171E-03
0.1267394032662049E-03
0.1207609748958691E-04
0.4709227238502033E-06
0.3706639850258617E-08

23

Table 9: 45-node quadrature for functions of the form (53), with a € [-0.1,1], N
precision 10-15

39, and

±Xi m
0.0000000000000000E+00
0.1135283181390291E+00
0.2253080046824045E+00
0.3336364252858657E+00
0.4369024052356911E+00
0.5336306707891807E+00
0.6225248777667337E+00
0.7025089656717720E+00
0.7727667118189729E+00
0.8327794264993337E+00
0.8823615451977041E+00
0.9216930322777481E+00
0.9513451962287941E+00
0.9722913641056944E+00
0.9858845322639776E+00
0.9937724959340503E+00
0.9977200386244100E+00
0.9993454278943935E+00
0.9998636273258416E+00
0.9999815974719829E+00
0.9999986596740707E+00
0.9999999622133619E+00
0.9999999998137450E+00

0.1138212938786054E+00
0.1129431358863252E+00
0.1103317059272695E+00
0.1060558645237672E+00
0.1002294986469973E+00
0.9301028558331059E-01
0.8459812566475355E-01
0.7523338442881639E-01
0.6519506433099722E-01
0.5479889055074179E-01
0.4439489209928996E-01
0.3436308131973152E-01
0.2510376733595393E-01
0.1701539437521317E-01
0.1044852849794223E-01
0.5626146436355554E-02
0.2543352365327656E-02
0.9118380718941661E-03
0.2403706487446808E-03
0.4181929949775085E-04
0.4045883666118617E-05
0.1599158044436823E-06
0.1268296767711113E-08

24

Table 10: 38-node quadrature for functions of the form (54), with a E [-0.65,1], N
precision 10~9

19, and

Wi

0.7629165866352161E-18
0.3799719398931375E-16
0.5684549949701512E-15
0.6085909916179373E-14
0.5277191865393953E-13
0.3900442913791902E-12
0.2535538557277294E-11
0.1481755662897140E-10
0.7911595380511587E-10
0.3907746000477183E-09
0.1803070816493823E-08
0.7833265344260583E-08
0.3224897189563689E-07
0.1264894823726299E-06
0.4747932260937661E-06
0.1711978528765632E-05
0.5948052018171647E-05
0.1995877304286260E-04
0.6475274273537152E-04
0.2029004100170709E-03
0.6109309950274235E-03
0.1747449285439932E-02
0.4661579935095226E-02
0.1135932523990354E-01
0.2491532030262493E-01
0.4902801284057732E-01
0.8713816071641225E-01
0.1415514175271372E+00
0.2128806314974303E+00
0.2998564528132552E+00
0.3994239415560721E+00
0.5070313867113639E+00
0.6170411438386144E+00
0.7232121752054713E+00
0.8192137516286219E+00
0.8991333728333283E+00
0.9579443204807173E+00
0.9919093183441774E+00

0.4643955333268610E-17
0.1132690565299208E-15
0.1423549582265871E-14
0.1371876219104025E-13
0.1094397021531007E-12
0.7534990994077416E-12
0.4603432835276850E-11
0.2545533729683496E-10
0.1293022088581050E-09
0.6102781198001779E-09
0.2700678436986190E-08
0.1128792193586090E-07
0.4482855569803782E-07
0.1700035548631482E-06
0.6182057321480894E-06
0.2163108715557027E-05
0.7302447810573277E-05
0.2382492261847977E-04
0.7511062044871306E-04
0.2279609908900293E-03
0.6592765068003472E-03
0.1781666222619331E-02
0.4378093849756735E-02
0.9537600800370288E-02
0.1820679046524441E-01
0.3060746663786768E-01
0.4600643316091537E-01
0.6292513465068938E-01
0.7951989233968431E-01
0.9391761648476182E-01
0.1044517799613406E+00
0.1098153664961849E+00
0.1091553255900476E+00
0.1021230666276667E+00
0.8888680524875885E-01
0.7010796674100402E-01
0.4688508195206744E-01
0.2069742637648333E-01

25

• 3. The algorithm of this paper is not very efficient. For example, the quadrature formula
in Table 1 took about 2 minutes of CPU time on Ultra SPARC 2; the quadrature in Table
8 took about two hours of CPU time. Of course, extended precision on the UltraSparc
is quite inefficient; in double precision, Table 8 took about 4 minutes on to construct. In
any event, the quadratures of the type presented in this paper need not be constructed
"on the fly"; the nodes and weights can be precomputed and stored. From this point
of view, the CPU time requirements of our algorithm are not excessive. Still, its CPU
time requirements grow as n3 for large n, making it unsuitable for the construction of
quadratures of very high order.

6 Generalizations and Conclusions

We have constructed a scheme for the design of Generalized Gaussian Quadratures for a fairly
broad classes of functions. The results presented here should be viewed as somewhat experi-
mental, since while the algorithm appears to work under quite general conditions, we can only
prove that it has to work for Chebyshev systems.

Several possible extensions of the work suggest themselves.

1. While our numerical experiments indicate that the scheme of this paper works under very
general conditions, we have only been able to prove that it has to work for Chebyshev systems
(see Subsection 2.1 above). This discrepancy seems to indicate that it might be profitable to
investigate generalizations of Theorem 2.1 to sets of functions other than Chebyshev systems.

2. By combining Observation 2.3 and Remark 2.4 with results in Sections 3, 4, it is fairly
straightforward to construct algorithms for the efficient interpolation of fairly large classes of
singular functions. For example, the nodes xi,X2,-- ■ ,X3e in Table 5 lead to a stable interpola-
tion formula on the interval [0,1] for all functions of the form

n rn

£iM*) ■£&,,••*% (55)
k=o j=i

with —0.3 < <Xj < 1, 0 < k < 19, and the precision of interpolation 10~15. Interpolation
schemes of this type are currently under vigorous investigation, and will be reported in the
near future.

3. In many situations (especially, in the numerical solution of partial differential equations),
it is desirable to have "quadrature" formulae that, in addition evaluating integrals, would
evaluate certain pseudodifferential operators, i.e. derivative, Hilbert Transform, derivative of
the Hilbert Transform, etc. Clearly, such "quadratures" can not have positive weights, except
for the Hilbert Transform. Several such quadratures have been constructed numerically, and
the appropriate theory appears to be fairly straightforward; this work will be reported at a
later date.

4. While the theory of Gaussian Quadratures in one dimension is extremely simple and well-
understood, no similar theory exists in higher dimensions, except for a few scattered results
(see, for example, [9],[14]). The approach of this paper is quite different from the classical

26

Gaussian Quadratures, and it appears possible to generalize it (at least, formally) to higher
dimensions. While the advantages of such a construction would be significant, our investigation
of it is at a very early stage. If successful, it will be reported at a later date.

References

[2

[3

[4

is:

[6

[7:

[8

[9

[10

[11

[12:

[13

R. BULIRSCH, J. STOER, Fehlerabschätzungen und Extrapolation mit Rationalen Funktio-
nen bei Verfahren vom Richardson-Typus, Numerische Mathematik, 6, 413-427 (1964).

F. GANTMACHER AND M. KREIN, Oscillation matrices and kernels and small oscilla-
tions of mechanical systems, 2nd ed., Gosudarstv. Izdat. Tehn-Teor. Lit., Moscow, 1950
(Russian).

W. GAUTCHI, On Generating Orthogonal Polynomials, SIAM Journal on Scientific and
Statistical Computing, V. 3, No. 3, 1982.

D. GOTTLIEB, S. ORSZAG, Numerical Analysis of Spectral Methods, SIAM, Philadelphia,

1977.

T. HRYCAK, V. ROKHLIN, An Improved Fast Multipole Algorithm for Potential Fields,
SIAM Journal of Scientific Computing, Vol. 19, No. 6, pp. 1804-1826, 1998.

S. KARLIN, The Existence of Eigenvalues for Integral Operators, Trans. Am. Math. Soc.
v. 113, pp. 1-17 (1964).

S. KARLIN, AND W. J. STUDDEN, Tchebycheff Systems with Applications In Analysis And
Statistics, John Wiley (Interscience), New York, 1966.

M. G. KREIN, The Ideas of P. L. Chebyshev and A. A. Markov in the Theory Of Limiting
Values Of Integrals, American Mathematical Society Translations, Ser. 2, Vol. 12, 1959,
pp. 1-122.

J. N. LYNESS, D. JESPERSEN, Moderate Degree Symmetric Quadrature Rules for the
Triangle, Journal of the Institute of Mathematics and its Applications, 1975, V. 15, pp.
19-32.

J. MA, V. ROKHLIN, AND S. WANDZURA, Generalized Gaussian Quadratures For Systems
of Arbitrary Functions, SIAM Journal of Numerical Analysis, v. 33, No. 3, pp. 971-996,
1996.

A. A. MARKOV, On the limiting values of integrals in connection with interpolation, Zap.
Imp. Akad. Nauk. Fiz.-Mat. Otd. (8) 6 (1898), no.5 (Russian), pp. 146-230 of [12].

A. A. MARKOV, Selected papers on continued fractions and the theory of functions devi-
ating least from zero, OGIZ, Moscow-Leningrad, 1948 (Russian).

J. STOER, R. BULIRSCH, Introduction to Numerical Analysis, Second Edition, Springer-
Verlag, 1993.

27

[14] S. WANDZURA, H. XIAO, Quadrature Rules on Triangles in R2, Yale University Technical
Report YALEU/DCS/RR-1168 (1998).

[15] N. YARVIN AND V. ROKHLIN, Generalized Gaussian Quadratures and Singular Value De-
compositions of Integral Operators, Yale University Technical Report YALEU/DCS/ RR-
1109 (1996), to appear in SIAM Journal on Scientific Computing.

[16] N. YARVIN AND V. ROKHLIN, An Improved Fast Multipole Algorithm for Potential Fields
on One-Dimensional Structures, Yale University Technical Report YALEU/DCS/RR-1119
(1997), to appear in SIAM Journal on Numerical Analysis.

28

A Fast Adaptive Multipole Algorithm in Three
Dimensions

H. Cheng, L. Greengard, V. Rokhlin
Research Report YALEU/DCS/RR-1158

August 3, 1998

YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

Ever since its introduction in the 1980's, the Past Multipole Method has been capable of
producing very high accuracy for an acceptable cost in two dimensions; in three dimensions,
it has been considerably less efficient, except when the accuracy requirements were low.
This situation changed somewhat with the appearance of a new version of the FMM in [12],
which is highly efficient over a wide range of accuracies. That paper introduced a rather
involved mathematical apparatus and described the algorithm in its simplest, non-adaptive
form. In this paper, we describe an adaptive version of the scheme of [12], applicable to all
distributions of particles that are likely to be encountered in practice. The performance of
the algorithm is illustrated with numerical examples.

A East Adaptive Multipole Algorithm in Three
Dimensions

H. Cheng, L. Greengard, V. Rokhlin
Research JReport YALEU/DCS/RR-1158

August 3, 1998

The first and third authors were supported in part by DARPA/AFOSR under Contracts
F49620-95-C-0075, F49620-97-1-0011. In addition, the third author was supported in part
by ONR under Grant N00014-96-1-0188.
The second author was supported in part by the US Department of Energy under Contract
DEFGO288ER2S053 and in part by DARPA/AFOSR under Contract F49620-95-C-0075.
Approved for public release: distribution is unlimited.
Keywords: Laplace Equation, Translation Operators, Fast Multipole Method, Adaptive
Algorithms.

A Fast Adaptive Multipole Algorithm in Three Dimensions

H. Cheng, L. Greengard and V. Rokhlin

August 3, 1998

1 Introduction

In [12], a new version of the East Multipole Method (FMM) for the evaluation of potential
fields in three dimensions was introduced. The scheme evaluates all pairwise interactions in
large ensembles of particles, i.e. expressions of the form

("=5iA (1)

for the gravitational or electrostatic potential and

^-S«-1^F (2)

for the field, where xx,X2,---,xn are points in R3, and q\,<fc,• • •,qn are a set of (real) coeffi-
cients.

The evaluation of expressions of the form (1) is closely related to a number of important
problems in applied mathematics, physics, chemistry, and biology. These include molecu-
lar dynamics and quantum-mechanical simulations in chemistry, the evolution of large-scale
gravitational systems in astrophysics, capacitance and inductance calculations in electrical en-
gineering, and incompressible fluid dynamics. When certain closely related interactions are
considered as well, involving expressions of the form

n i.k-\\xj-Xi\\

*(l')=I>T^r (3)

the list of applications becomes even more extensive.
Ever since its introduction in the 1980's, the FMM has been capable of producing very high

accuracy for an acceptable cost in two dimensions; in three dimensions, it has been considerably
less efficient, except when the accuracy requirements were low. This situation changed some-
what with the development of a new version of the FMM in [12], which is highly efficient over
a wide range of accuracies. That paper introduced a rather involved mathematical apparatus
and described the algorithm in its simplest, non-adaptive form.

Needless to say, most charge distributions encountered in applications are highly non-
uniform, and to be robust, a procedure for the evaluation of sums of the form (1) or (2)
has to be adaptive. In this paper, we introduce such a scheme, applicable to all distributions of
particles that are likely to be encountered in practice. An additional improvement introduced
in this paper is a "compressed" version of translation operators used by the FMM procedure,
which is the principal reason for the improvement of the timings found in Section 7 below over
those in [12].

The paper is organized as follows. In Section 2, we summarize the mathematical and numer-
ical facts to be used in subsequent sections. In Section 3, we review the analytical apparatus to
be used in the design of the improved version of the FMM. Section 4 recapitulates the algorithm
of [12], to be used as the starting point in the construction of the scheme of this paper. In
Section 5, we describe the adaptive version of the FMM and make some comparisons with tree
codes. In Section 6, we illustrate the performance of the method with several numerical exam-
ples. Finally, Section 7 discusses several possible generalizations. For a review of FMM-type
methods and a more thorough discussion of the literature, we refer the reader to [12].

2 Mathematical preliminaries

In this section, we review the analytical tools used in the design of the FMM algorithm. For a
detailed discussion, see [15,14, 21, 9, 12].

We begin by defining the spherical harmonics of degree n and order m according to the
formula

'"'■«-feS ■eWK"*,. (4)
Here, the special functions P? are the associated Legendre functions, which can be defined by
the Rodrigues' formula

P?(x) = (-l)-(l - X*r/2£-Pnix),

where Pn{x) denotes the Legendre polynomial of degree n.

Theorem 2.1 (Multipole Expansion). Suppose that N charges of strengths 51,92, ••• ,qN

are located at points X\,XZ,...,XN with spherical coordinates (pi,ai,ßi), (p2,<*2,ß2),---,
(pif,(*N,ßN), respectively. Suppose further that the points Xi,X2,...,Xjf are located inside
a sphere of radius a centered at the origin. Then, for any point X = (r, 6,4) € R3 with r>a,
the potential $(X), generated by the charges qu 92, ■ • •, qn, is given by the formula

() = £ E ^rT(M, (5)
n=0m=—n '

where

AC = Eft-P?-i7ro(ai,A). (6)
t=i

Furthermore, for any p > 1,
p n M™

()-E E 3r-ir(M)
n=Ont=—n (*#) (?)

P+l
(7)

The preceding theorem describes an efficient representation of the far field due to a collection
of sources. Within the FMM, it is also useful to be able to describe the field locally when the
charges themselves are far away.

Theorem 2.2 (Local Expansion) Suppose that N charges of strengths q\, 92, • • •, qx are lo-
cated at the pointsX\,X2,•••,Xff inR3 with spherical coordinates (pi,ai,ßi), (pi,«2,/%), • • •,
(PN, ocN, ßs) respectively. Suppose further that all the points X\,X2,-" > -Xtf ore located outside
the sphere Sa of radius a centered at the origin. Then, for any point X € Sa with coordinates
(r,6,<f>), the potential $(X) generated by the charges ft, ft, •••,?# is described by the local
expansion:

00 5

(8) *(X
j=Ok=-j

Y?i*,+) •r>',

Q- E*- j+x
l=X Pi

ßi)

where

* vrk(n, n,\
(9)

with A£ defined by (14). Furthermore, for any p>l,

2.1 Translation Operators

The FMM relies on the ability to translate multipole and local expansions. The relevant
translation operators are described in the next three theorems [11, 9].

Theorem 2.3 (Translation of a Multipole Expansion) Suppose that N charges of strengths
ft,ft,,,-,ftv ore located inside the sphere D of radius a centered at XQ = (p,a,ß). Suppose
further that for any point X = (r, 6, d>) € R3 \ D, the potential due to these charges is given by
the multipole expansion

00 n fyn

W = E E pärW.rfO. (ii)
n=0 m=—n

where (r', &, <f>') are the spherical coordinates of the vector X — XQ.

Then, for any point X — (r,6,4>) outside a sphere D\ of radius (a + p) centered at the
origin,

*w = EE3i-if(M), (i2)
j=Ok=-jr

where

M* = Y y °i-nm • »|fcHmH*-m| • 4P • 4-" • pn • y*-m(<*, ß)
A* n=0 m=—n j

(13)

with A£ defined by the formula

"*" v^'^FF+^F' (14)

Furthermore, for any p > 1,

Definition 2.1 Formula (13) defines a linear operator converting the multipole expansion
coefficients {Oj} into the multipole expansion coefficients {M*}- This linear mapping will be
denoted by TMM •

Theorem 2.4 (Conversion of a Multipole Expansion to a Local Expansion) Suppose
that N charges of strengths gi, ?2> •" •» 9AT are located inside the sphere Dx0 of radius a centered
at the point XQ = (p,a,ß), and that p > (c + l)o for some c > 1. TAen <Ae corresponding
multipole expansion. (11) converges inside the sphere DQ of radius a centered at the origin.
Furthermore, for any point X € DQ with coordinates (r,0,d>), the potential due to the charges
9i) 92» • • ■ > QN is described by the local expansion:

00 j

where

$ffl = EEir1/i(M)TJ-, (16)
j=Qk=-j

' ^Jl» <-l)«ii&? •/*+*« ' (17)

urtiA A% defined by (14). Furthermore, for any p > 1,

*w - £ E ** • Yfv, $ • r*+i| < (&M) (I)1*1. (18)

Definition 2.2 Formula (17) defines a linear operator converting the multipole expansion
coefficients {0|} into the local expansion coefficients {£*}. This linear mapping will be denoted
by 7ML-

Theorem 2.5 (Translation of a Local Expansion) Suppose that Xo,X are a pair of points
in R3 with spherical coordinates (p,a,ß),(r,6,<f>) respectively, and (r',^,^') are the spherical
coordinates of the vector X — XQ andp is a natural number. LetXo be the center ofapth-order
local expansion with p finite, its expression at the point X is given by the formula

() = E E °n- Y?i*,f) -r'n. (19)
n=0 m=—n

Then

j=0k=-j

everywhere in R3, with

P « nm • t*M-lm-*H*l. 4"»-.*. A* • Y^Ma. 0) • on-i
Lj- 2-, 2s (-l)n+i • A™ ' K '

a=jm=-n * ' ^*

and A% are defined by (14).

Definition 2.3 Formula (21) defines a linear operator converting the local expansion coeffi-
cients {O™} into the local expansion coefficients {-L™}. This linear mapping will be denoted
hyTLL-

Remark 2.1 The matrices representing the linear operators TMM, TMLI and TLL are dense,
so that applying them to truncated expansions with Oip2) coefficients costs 0{pA) operations.
This is one of principal reasons for the relatively high GPU time requirements of most existing
FMM implementations in three dimensions. Section 3 of this paper provides tools for the rapid
application of the operators TMMI TML, TLL to arbitrary vectors, improving the efficiency of
FMM algorithms significantly.

2.2 Rotation Operators

In this subsection, we introduce operators which transform multipole and local expansions
under rotations of the coordinate system. These operators will play a role in Section 3. The
basic results are contained in the next two theorems, whose proofs can be found in [3], together
with formulae for the evaluation of the coefficients R£,m> in (22), (23).

Theorem 2.6 (Rotation of Multipole Expansions) Suppose that (ei,e2,C3) are the three
standard orthonormal basis vectors in R3, given by the formulae

ei = (1,0,0),
e2 = (0,1,0),
e3 = (0,0,1),

and (u>i,W2,iJ3) are three other orthonormal verctors in R3, forming another basis.
Suppose further that a harmonic function $: R3 \ {0} *•+ R is defined by the formula

p n M™
()«£ E ;3rWM).

n=0m=—n

with (r, 6, <j>) the spherical coordinates of the point X € R3 associated xvith the basis (ei, ei, e%).
Then, there exist coefficients Rg*1' with n — 0,l,---,p, m = -n,...,n, m' = -n,...,n, such
that for any X € R3,

*w = E E %'X?v**)>
n=0 m'=—n

u/Aere (r,^,^') ore spherical coordinates of X in the system of coordinates associated with the
basis (u>i,(*^,W3), and

*C'= E 3P*m'-AC, (22)
m=—n

/or all n = 0,1, ...,p, m' = -n,..., n.

Theorem 2.7 (Rotation of Local Expansions) Under the conditions of Theorem 2.6, sup-
pose that a harmonic function $: R3 i-f R is defined by the formula

*P0 = E E C-rn+1-C(M),
n=0 m=—n

where (r, 6, <j>) are the spherical coordinates of the point X £ Kz associated with the basis
(ei, e2, e3). Then for any X € R3,

W = E E l£-r+l-Y?it,n
n=0m'=-n

where {rtff,<f>') are spherical coordinates of X in the system of coordinates associated with the
basis (wi,W2,«3), and

^n'= E K'm'-IZ, (23)
m=—n

for alln = 0,l,...,p, m' = -n,...,n. Furthermore, the coefficients R£'m' are the same as in
(22).

Definition 2.4 Given a rotation Q : R3 t-t R3, formulae (22), (23) define operators converting
the multipole coefficients {M£} into the multipole coefficients {M£} and the local coefficients
{XJJ1} into the local coefficients {ÜJJ1}, respectively. These two operators are identical, and will
be denoted by K(Q).

Remark 2.2 An inspection of formulae (22), (23) shows immediately that the numerical eval-
uation of the operator 7£($2) requires 0(p3) operations.

2.3 Exponential representation

The new generation of FMMs is based on a combination of multipole expansions and exponen-
tial or "plane wave" expansions. Given a source point P = (so>yo.«o) and a target location
Q = (x, y, z), with z > ZQ and r = \\P — Q||, we begin with the formula [16]

I _ _L ^°°e->(*-«o) f ^((x-xojcosa+fo-yojsina)^^
r 2TT Jo Jo

(24)

We will construct approximations to the integral in (24) via appropriately chosen quadrature
formulae. These quadratures are investigated in detail in [23]; in the following lemma, we
simply state the result for three special cases, corresponding to three-digit, six-digit and nine-
digit accuracy.

Lemma 2.8 ([23, 12]) Suppose that XQ = (xo,yo,2o), X = (x,y,z) are a pair of points in R3,
and that r = \\X — Xo\\. Suppose further that the coordinates (x — xo,y — yo,z — ZQ) of the
vector X — Xo satisfy the conditions

l<z-zo<4, 0 < y/(x - x0)2 + (y - yo)2 < 4\/2.

Then

"I i 8 .3 ***
± _ V^ i3L y^c-AM(*-«o)-*(i-xo)-cos(Q?>t)-(y-yo)-«in(aJ>t)

17 * JMj

m* *mm0J KMy ^~
fc=l * 3=1

i 26 9 **?

«• ^Htf KAP fc^» 1" ^ Mt t—, fc=l * 3=1

(25)

< 1.6 x 10-3, (26)

< 1.3 x 10-6, (27)

< 1.1 x 1(T9, (28)

where ajk = 2irj/MJl, a^ = 2irj/M$, a** = 2irj/M%. The weights {to},I = 1,...,8}, {wf,l =
1,...,17},' {w?,l = 1,...,26}, the nodes {\f,l = 1.....8}, {A?,i = 1,...,17}, {A?,J = 1,...,26}
and the integer arrays {Af|,fc = 1,...,8}, {M%,k = 1,...,17}, {Af|,Ar = 1,...,26} are given in
Tables IS, 14, 15 of the Appendix, respectively.

Remark 2.3 The conditions (25) in the preceding Lemma appear to be rather special. They
are, however, related to the geometric refinement of space introduced by the FMM and then-
use will become clear in the next section.

Remark 2.4 When the desired precision is clear from the context, we will simplify the notation
used in Lemma 2.8, writing each of the expressions (26), (27), (28) in the form

k=\ K j=l
< e, (29)

where the integers s(e) and the triplets {Mk,Wk,\k\ * = l5--->e} all depend on e, and
ajtk = 2irj/Mk. The total number of exponential basis functions used in (29) will be denoted
by

Sexp = ^2 Mk. (30)
Jk=l

3 Data Structures and Past Translation Operators

In order to develop a fast algorithm, we first define the computational domain to be the
smallest cube in R3 containing all sources. We then build a hierarchy of boxes, refining the
computational domain into smaller and smaller regions. At refinement level 0, we have a single
box corresponding to the entire computational domain. Refinement level / + 1 is obtained
recursively from level / by the subdivision of each box into eight cubic boxes of equal size. In
the nonadaptive case, this recursive process is halted after roughly logg N levels, where N is
the total number of sources under consideration.

Definition 3.1 A box c is said to be a child of box b, if box c is obtained by a single subdivision
of box 6. Box b is said to be the parent of box c.

Definition 3.2 Two boxes are said to be colleagues if they are at the same refinement level
and share a boundary point. (A box is considered to be a colleague of itself.) The set of
colleagues of a box b will be denoted by Coll(b).

Definition 3.3 Two boxes are said to be well separated if they are at the same refinement
level and are not colleagues.

Definition 3.4 With each box b is associated an interaction list, consisting of the children of
the colleagues of 6's parent which are well separated from box 6 (Figure 1).

Note that a box can have up to 27 colleagues and that its interaction list contains up to
189 boxes. Figure 1 depicts the colleagues and interaction list of a box in a two-dimensional
setting.

8

Figure 1: The colleagues of a (two-dimensional) box b are darkly shaded, while its interaction list
is indicated in white. In three dimensions, a box b has up to 27 colleagues and its interaction list
contains up to 189 boxes.

The interaction list for each box will be further subdivided into six lists, associated with the
six coordinate directions (+z, —z, +y, —y, +x, —x) in the three dimensional coordinate system.
We will refer to the +z direction as up, the — z direction as down, the +y direction as north,
the — y direction as south, the +s direction as east, and the —x direction as west.

Definition 3.5 (Directional lists)
The Uplist for a box b consists of those elements of the interaction list which lie above b and

are separated by at least one box in the +z-direction (Fig. 2).
The Downlist for a box 6 consists of those elements of the interaction list which He below b

and are separated by at least one box in the — z-direction.
The Northlist for a box b consists of those elements of the interaction list which lie north

of b, are separated by at least one box in the +y-direction, and are not contained in the Up or
Down lists.

The Southlist for a box 6 consists of those elements of the interaction list which lie south
of b, are separated by at least one box in the —y-direction, and are not contained in the Up or
Down lists.

The Eastlist for a box 6 consists of those elements of the interaction list which lie east of b,
are separated by at least one box in the +x-direction, and are not contained in the Up, Down,
North, or South lists.

The Westlist for a box b consists of those elements of the interaction list which lie west of b,
are separated by at least one box in the —s-direction, and are not contained in the Up, Down,
North, or South lists.

For any box 6, we will denote the number of elements in its Uplist by N(Uplist(b)), and
adopt a similar convention for each of the remain five lists.

Remark 3.1 It is easy to verify that the original interaction list is equal to the union of the

D

Figure 2: The Uplist for the box b (see Definition 3.5).

Up, Down, North, South, East and West lists. It is also easy to verify for two boxes 6, c that

cEUplist(b) «* b E Downlist{c),
c E Northlist{b) «*• b E Southlist(c), (31)

c E Eastlist(b) & beWestlist(c).

Furthermore, suppose that two boxes 6 and c are of unit volume and that c E Uplistib). Then
for any point X0 = (xQ,y0,zo) E b and any point X = (x,y,z) E c, the vector X - X0 =
{x -xo,y — yo,z — ZQ) satisfies the inequality

l<z-zo<4, 0<y/(x- s0)
2 + (y - yo)2 < 4v/2.

Note that this is precisely the condition (25) in Lemma 2.8.

(32)

Remark 3.2 When there is no danger of confusion, we will use Uplist(b) to refer to the geo-
metrical region defined by the union of all boxes in the Uplist of box 6. This is a slight abuse
of notation, since Uplistfb) is, strictly speaking, a set of boxes. We will take the same liberty
with Downlistfb), Northlistfb), Southlist(b), EasÜist(b), Westiist(b) and Coll(b).

3.1 Rotation Based Translation Operators

In this section, we describe a simple scheme for reducing the cost of applying any of the three
operators TMM, TML, TLL to an arbitrary vector from 0(pA) to 0{pz) operations. The scheme
is based on the observation that when a multipole or local expansion is translated along the
z-axis, the cost is reduced from 0[pA) to 0(p3) [5, 12, 22]. The following lemma is obtained
immediately from the resulting simplification of formulae (13), (17) and (21).

10

Lemma 3.1 If, in Theorems 2.3, 2.4 and 2.5, the spherical coordinates of the point XQ are
(p,0,0), then the formulae (IS), (17) and (21) assume the form

n=o Aj

« Ok
n-A>.A) -1^(0,0)

«=0 v-Dn4H.v+n+1

fQ^-4-3-4-tj(0,0)
' £5 (-l)n+J-^

rfl-3
(35)

respecftue/j/.

Definition 3.6 The special cases of the linear operators TMM> TML, and 7LL defined by the
formulae (33), (34), and (35) will be denoted by 7^M, TML, and T£L respectively.

Observation 3.3 (Rotation Based Translation Operators) Inspection of formulae (33),
(34), (35) indicates that each of the operators TMM > TML and T£L can be applied numerically to
an arbitrary pth-order expansion for a cost proportional to p3. Thus, a translation operator can
be applied to an arbitrary vector for a cost proportional to p3 via the following procedure. First,
the system of coordinates is rotated so that the new z-axis points to the desired translation
center. Then, the expansion is translated via one of the formulae (33), (34) and (35). Finally,
the translated expansion is rotated back to the original system of coordinates. Since each of
the three stages costs 0(p3) operations, the cost of the whole process has also been reduced to
0(p3) operations. Formally, the scheme we have outlined corresponds to the factorizations

TMM = ^ß-^^o^fi), (36)

TUL = 1l{Ü-x)oT^LoTl{Ü), (37)
Tu. = niQ-^oTELoTKÜ), (38)

where %{Q) is defined in section 2.2 and 7£(ft-1) denotes the inverse rotation operator.

3.2 Plane Wave Based Translation Operators

In three-dimensional fast multipole schemes, the operator TML (converting multipole expan-
sions into local ones) tends to be applied much more frequently then the operators TMM > TLL

which shift multipole and local expansions. Ignoring boundary effects, one ends up applying
TML to the multipole expansion for each box about 189 times when the charge distribution is
uniform. The operators TMM. TLLI on the other hand, are applied roughly once per box. In the
algorithm of this paper, the operators TMM > TLL are applied via the order p3 scheme described
in the preceding section; TML is applied by means of a much more complicated procedure,
involving the plane wave representation introduced in on Lemma 2.8 of section 2.3.

The following observation provides an expansion of the form (29) for the potential generated
by a collection of charges. It is an immediate consequence of Lemma 2.8.

11

Observation 3.4 Suppose that N charges of strengths qi,q2,—,qN are located at points
X\,X2,---, XN in R3 with Cartesian coordinates {xi,yi,zi),(x2,y2,Z2),...,{xn,yN,ZN), re-
spectively. Suppose further that all points X\,X2, ...,Xjf are inside a cubic box 6 with unit
volume centered at the origin and that X = {x,y,z) € R3 such that -X" € Uplist(b). Let $(X)
denote the potential generated by the charges qi,q2,—,9N and let ty£ be denned by the formula

«(E) Mk

Ve(X) = EEw^i) • e~XkZ 'eiXk<s-a*a^+v'sin(a^\ (39)
k=lj=l

with the coefficients W(k, j) given by the formula

N
W(k, j) = —Yqi- eXkZ' • e-*k<*r«*(<*j.k)+vr*n{<*j.k))j (40)

for all k = l,...,s(e),j = 1,..., Af*- Then, if A = J2iLi Wlh "S ^&ve the estimate

*(X)-9,(X)\<Ae. (41)

Observation 3.5 A somewhat involved analysis shows that, under the conditions of the pre-
ceding observation, s(e) ~ p, where p is chosen according to (7) to achieve the same accuracy
using a multipole expansion. Likewise, the total number of exponential basis functions Sgxp in
(39) is of the same order as the total number of multipole moments (p2) in (7) in order that
the two expansions provide the same precision e.

Expansions of the form (39) will be referred to as exponential expansions. Their main utility
is that translation takes a particularly simple form.

Theorem 3.2 (Diagonal translation) Suppose that a function VeiX) : R3 »-» C is defined
by the formula (39), which we view as an expansion centered at the origin for X = (x,y,z).
Then, for any vector Xo = (xo,yo,zo) € R3, we have the shifted expansion

«(c) Mk

We(X) = T2J2 V(k,j) • e~A*(*~*°> • e
iXk'^x~Xo^co^ai'k^v~yo^^ai^\ (42)

Jfc=ij=i

where

V(k,j) = W(k,j) • e-XkX0 • e{Xk<X0CO8^^+y°'ä^a^\ (43)

for k = l,..., s(e), j = 1,..., Mk.

Definition 3.7 Formula (43) defines a linear operator mapping the coefficients {W(k, j)} to
the coefficients {V(k, j)}. This linear operator will be denoted by ©«*>•

12

The operator Vexp provides a tool for translating expansions of the form (39) at a cost
of O(Sexp) ~ Oip2) operations. In FMM algorithms, however, it is convenient to be able
to use multipole and local expansions. Thus, in order to be able to use the operator Vexp,
linear operators converting multipole expansions into exponential expansions and exponential
expansions into local expansions have to be constructed. The following two theorems provide
such operators.

Theorem 3.3 Suppose that N charges of strengths 9i,92,-*- ,9/sr are located inside a box b of
volume dz centered at the origin, e is a positive real number and p is an integer such that for
any point X e Uplist(b) with spherical coordinates (r,6,<f>), the potential $(-X") generated by
the charges q\,92, • • • >QN satisfies the inequality

V n fym.

n=Om=—n
<£. (44)

Then
«(e) Mk

$(X) - y^ Y* W{k, j) • e~^Xk^'z • e*(A*/^'(s'w(a*fc)+y'8in(a**N
k=lj=l

where (x,y,z) are the Cartesian coordinates of X, A = £i=i l©l> an<*

wk/d P P

^■) = ^EH)H-e^E 0?
Mk

<{A/d + l)-e, (45)

ff(A*A0", (46)
m- „ 11 \/(n — m)\(n + m)\ m=—p n=|m| v v ' v '

for k = l,...,s(e), j = l,...,Mk.

Definition 3.8 Formula (46) defines a linear operator converting the coefficients {O™} into
the coefficients {W(k, j)}. This linear mapping will be denoted by Cux-

Theorem 3.4 Suppose that N charges of strengths 9i,92,"-,9w are located inside a box b
of volume dz centered at the origin, e is a positive real number, and that for any point X =
{x,y,z) € Uplist(6), the potential $(X) generated by the charges 9i,92,-",9tf satisfies the
inequality

«« Mk
$(.*) _ £ £ W(k,j) • e-^/O-* • ei(^/'0(*«»(«i.*)+»-8m(aJ-.t)) < (A/d). e>

k=lj=l

where A = Y^iLi \qi\- Then there exists an integer p, such that

()-£ £ ir-WM"* <(A/d+l).e,
n=0m=—n

where (r,6,<f>) are the spherical coordinates of X and

V (« ~ "*)!(« + "*)! t=i £1
for n = 0, ...,p, m = —n, ...,n.

(47)

(48)

(49)

13

Definition 3.9 Formula (49) defines a linear operator converting the coefficients {W(k, j)}
into the coefficients {L%}. This linear mapping will be denoted by CXL-

Remark 3.6 It is easy to see that (46) can be evaluated numerically for k = l,...,s(e),j =
1,..., A/"*, at a cost proportional to p3. Indeed, we first calculate (2p + 1) • s(e) quantities Fk,m

defined by the formula

Fk,m= £ . °fu ,Ah/d)n, (50)
nr^|\/(n-m)!(n + m)!

for k = l,...,s(e),m = -p,...,p. This step requires 0(s(e) -p2) operations. We then evaluate
the coefficients W(k, j) via the formula

W{Kj) = A^ E (-i)|m| * ***** * Fk^ (51) * m=—p

for fc = l,...,s(e), j = l,...,Mifc, at a cost of 0(£exp -p) operations. Thus, the total cost of
applying the operator CMX numerically to a pth-order multipole expansion is

Cost{CMx) ~ 0{p2s{e) + pScxp) ~ 0{p% (52)

making use of Observation 3.5. A similar argument shows that the operator CXL can also be
evaluated numerically for a cost proportional to p3.

The proofe of Theorems 3.2, 3.3, 3.4 can be found in [12]. The following observation follows
immediately from Theorems 3.2, 3.3 and 3.4.

Observation 3.7 (Multipole to local translation for the Uplist) Suppose that 6,c are
two boxes such that c is in the Uplist of 6. Then the translation operator TML which converts
a multipole expansion centered in 6 to a local expansion centered in c can be applied via the
following procedure. First, convert the multipole expansion centered in 6 into an exponential
expansion via the operator CMX; then, use the operator D,^ to translate the resulting ex-
ponential expansion to the center of box c; finally, convert the latter expansion into a local
expansion in box c via the operator CXL- In short,

TML = CXL ° T>exp ° CMx- (53)

Observation 3.8 (Multipole to local translation: general case) The decomposition (53)
of the operator TML is valid only when box c is in the Uplist of box b. When box c is not in
the Uplist of box 6, the operator TML can easily be applied by first rotating the system of
coordinates, so that in the new coordinate system, box c lies in the Uplist of box 6, applying
the operator TML via (53) to the rotated expansion, and finally rotating back to the original
system of coordinates. Formally, this corresponds to the factorization

TML = TliQ-^o CXL oV^o CMX on{Q). (54)

The rotation operators H(Q) are described in section 2.2.

14

Multipole

(EKPJ

Exponential Exponential

Figure 3: A large number of multipole-to-local translations, each costing 0(p3) operations are
replaced by a single multipole-to-exponential operator costing 0{p3) operations, a large number of
exponential translations costing 0{j?) operations, and a single exponential-to-local operator costing
0(p3) operations.

Remark 3.9 As mentioned earlier, application of the translation operators TML is a dominant
part of FMM algorithms, occurring up to 189 times per box. Naive application of these oper-
ators results in a cost of roughly 189 • p4 operations per box, which is prohibitively expensive
in most cases. Fast rotation-based schemes [5, 22, 12] use Observation 3.3 to reduce the cost
to roughly 189 • 3 • p3 operations per box; the resulting FMM schemes are fairly efficient in
low-precision applications. Theorems 3.2, 3.3, 3.4 of this subsection can be used to reduce
the cost of application of the operators TML to approximately 20 • p3 +189 • p2 operations per
box. Indeed, in order to account for the interaction of box b with its Uplist boxes, we use
the operator CMX of Theorem 3.3 to convert 6's multipole expansion into an exponential one
for a cost proportional to p3. We then use the operator Vexp of Theorem 3.2 to translate the
resulting exponential expansion to each of the boxes in Uplistfb), for a cost propotional to
N(Uplist(&)) • p2. Subsequently, we convert the accumulated exponential expansion for each
box into a local one via the operator CXL of Theorem 3.4, for a cost proportional to p3. This
procedure is illustrated in Figure 3. The analogous process must, of course, be repeated for the
Downlist, Northlist, Southlist, Eastiist, and Westiist For the Northlist, Southlist, Eastiist, and
Westiist (but not for the Downlist), there is an additional cost proportional to 2 -p3 operations
per box to rotate the coordinate system, as described in Observation 3.8. The total cost for
each of the six interaction lists is summarized in the following

Cost(Uplist) ~
Cost(Downlist) ~
Cost{Nortidist) ~
Cost(Southlist) ~

2-p3 + N(Uplist(b))-p2,
2 • p3 -I- N(Dovmlist(b)) • p2,
4-p3 + N(Northlist(b))-p2,
4.p3 + JV(5ou«Wtsi(6)).p2,

(55)

15

Cost(Eastiist) ~ 4-p3 + N(Eastlist(b)) -p2,
Cost{WesÜist) ~ 4'p3+N(WesÜist(b))-p2,

respectively. Combining (55) with the fact that the maximum total number of boxes in the
interaction list is 189, we obtain

Cost{TML) ~ 20 • p3 +189 • p2. (56)

Remark 3.10 The procedure of the preceding section has been further accelerated. First,
symmetry considerations can be used to reduce number of translations per box from 189 to
40 without any loss of precision. We refer the reader to [12] for details. Second, while the
expansions (5) and (8) are expressed in terms of spherical harmonics, they are being used to
represent potentials inside or outside of regions that are cubic in shape. Clearly, spherical
harmonics are not an optimal basis for this purpose. Special-purpose harmonics have been
developed for the representation of potentials in such regions; they have been incorporated
in our implementation and the timings presented in Section 6 below reflect this additional
improvement. The procedure itself is fairly involved, and will be reported at a later date [6].

4 The non-adaptive FMM

In this section, we describe the non-adaptive FMM algorithm of [12], combining the factoriza-
tion (54) of the translation operator TML with the factorizations (36), (38) of the operators
TMM, TLL- We present it here as a reference for the subsequent adaptive procedure. For details,
the reader is referred to the original paper [12].

In the FMM, the set of all boxes at level I is denoted by Bi, with Bo consisting of the
computational box itself. With each box b, we associate fourteen expansions about its center.

• A multipole expansion $& of the form (5) represents the potential generated by charges
contained inside 6; it is valid in R3 \ Coll(b).

• A local expansion \&t of the form (8) represents the potential generated by all charges
outside CoH(b); it is valid inside box 6.

• Six outgoing exponential expansions Wb
p, Wb

Down, Wb
North, wb

South, Wb
East, and Wb

Wtst

of the form (39), representing the potential generated by all charges located in 6 and
valid in Uplist(b), Downlist(b), Northlist(b), Southlist(b), Eastlist{b), and Westlist(b),
respectively.

• Six incoming exponential expansions Vb
Up Vb

Down, Vb
North, vb

S(mth, Vb
E(ut, and Vb

West of
the form (39), representing the potential inside 6 generated by all charges located in
Dovmlist(b), Uplist[b), Southlist{b), Northlist(b), Westlist[b), and Eastlist(b), respec-
tively.

16

NON-ADAPTIVE FMM ALGORITHM

Initialization

Comment [Choose number of refinement levels NLEV «log8 N, and the order p of the multipole
expansions. The number of boxes at the finest level is then 8NLEV, and the average
number of particles per box is s = N/(SKLEV). Denote the set of all boxes at level I

by*,.]

Upward Pass

Step 1

Do for each box 6 € 2?NLEV.

Form multipole expansion $j of potential field due to
particles in box b at b's center, via Theorem 2.1.

End do

Step 2

Do for levels I = NLEV - 1,..., 2,
Do for each box b € Bi,

Form multipole expansion $j about the center of b by
merging expansions from its eight children via Theorem 2.3.
(In applying TMM. use the factorization of Observation 3.3.)

End do
End do

Downward Pass

Initialization

Set *6 = (0,0,...,0) for all boxes.

Step SA

Do for levels / = 2,..., NLEV,
Do for each box 6 6 Bi,

Form local expansion $i about the center of b by
using Theorem 2.5 to shift the local expansion of 6's parent to b.
(In applying TLL< use the factorization of Observation 3.3.)

End do

17

Step SB

Do for Dir = Up, Down, North, South, East, West,
Do for each box b G Bi,

Convert the multipole expansion $j to the
"outgoing" exponential W/Xr, via Theorem 3.3.
Do for each box c € Dir — list(b),

Translate Wfir from b to c via Theorem 3.2 and add to Vj*.
End do

End do
Do for each box c E Bi,

Convert the incoming exponential V*** to the
local expansion $Cl via Theorem 3.4.

End do
End do

End do

Step 4

Do for each box b € BNLEV.

For each particle in box b, evaluate *j at the particle position.
End do

Step 5

Do for each box b € BNLEV.
For each particle in box b,
compute interactions with particles in 6's colleagues directly.

End do

5 The adaptive FMM

The preceding algorithm is efficient for reasonably uniform distributions of particles, but its
performance deteriorates significantly for non-uniform distributions, lb remedy this situation,
we construct an adaptive version of the scheme. Our strategy follows closely that used in [4]
for the two dimensional case. Starting with the computational box, we build our structure
recursively. If the box under consideration contains no charges, its existence is immediately
forgotten. If it contains fewer than s charges (where 5 is an appropriately chosen positive
integer), it is not subdivided further and considered childless. Otherwise, it is considered a
parent box and subdivided into its eight children. The procedure is then repeated for each of
the latter. As in the nonadaptive case, the set of all nonempty boxes at level I is denoted by
Bi, with Bo consisting of the computational box itself.

18

5.1 Adaptive lists

In order to describe the adaptive scheme, we will need the following additional lists.

Definition 5.1 List 1 of a childless box 6, denoted by L\{b), is defined to be the set consisting
of b and all childless boxes adjacent to 6. If 6 is a parent box, its List 1 is empty.

Definition 5.2 List 2 of a box b, denoted by £2(6), is the set consisting of all children of the
colleagues of ft's parent that are well separated from b.

Definition 5.3 List Sofa, childless box b, denoted by £3(6), is the set consisting of all descen-
dents of b's colleagues that are not adjacent to b, but whose parent boxes are adjacent to b. If
b is a parent box, its list 3 is empty.

Note that any box c in £3(6) is smaller than b and is separated from 6 by a distance not
less than the side of c, and not greater than the side of b.

Definition 5.4 List 4 of a box 6, denoted by 1/4(6), consists of boxes c such that b € £3(0); in
other words, c € £4(6) if and only if 6 € £3(0).

Note that all boxes in L\{b) are childless and are larger than b.

Figure 4 shows the four lists for a box 6 in two dimensions. Of these, List 1 and List 2 have
simple analogues in the non-adaptive algorithm of Section 4. Specifically, List 1 of some finest
level box b would consist of its colleagues, whose interactions will be accounted for directly.
List 2 of b would consist of boxes that are of the same size as b and are well separated: i.e.,
the interaction list of Definition 3.4. Lists 3 and 4 do not have analogues in the non-adaptive
scheme.

£2(6) is subdivided further into Uplist{b), Downlist{b), Northlist(b), Southlist(b), Eostiist(b),
and Westlist (b), by obvious analogy with Definition 3.5.

With each box b, we also associate fourteen expansions by analogy with those described in
section 4. The only difference is that the multipole expansion $(is valid in R3 \ {L\ (b) U L3 (&)).
Similarly, the local expansion ^4 represents the potential inside b generated by all charges
outside Lx(6) UL3{b).

ADAPTIVE FMM ALGORITHM

Initialization

Choose precision e and the order of the multipole expansions p. Choose the maximum number s
of charges allowed in a childless box. Define Bo to be the smallest cube containing all sources (the
computational domain).

19

/ 1

2 2 2 2

1 1 2 2

/

2 1 b t

4

2 1
l 1 l 1 3 i

3 3 3 3 I

3 3 3 3

/

2 :— 2

4

2 2 2 2

/ / / /

Figure 4: Lists 1-4 for box b

Build Tree Structure

5*ep 0

Do for levels/= 0,1,2,...
Do for each box b € Bi

If 6 contains more than s charges then
Divide b into eight child boxes. Ignore empty children
and add the nonempty child boxes to Bi+\.

End if
End do

End do

Comment [Denote the greatest refinement level obtained above by NLEV and the total number
of boxes created as NBOX. Create the four lists for each box.]

Do for each box bi,i = 1,2,...,NBOX
Create lists üifoJ.Zafo). J*(6i),i*(k).
Split Life) into Up, Down, North, South, East, West lists.

End do

Upward Pass

20

Comment [During the upward pass, a pth-order multipole expansion is formed for each box b about
its center, representing the potential in R3 \ (I>i(b) U £3(6)) due to all charges in b.]

Step 1

Comment [For each childless box b, form a multipole expansion about its center from all charges
in b.]

Do for each box biyi = l,2,...,NBOX
If bi is childless then

Use Theorem 2.1 to form jrth-order multipole expansion $&.,
representing the potential in R3 \ (£1(6) U 1/3(6)) due to all charges in 6,.

End if
End do

Step 2

Comment [For each parent box, form a multipole expansion about its center by merging multipole
expansions from its children.]

Do for levels I = NLEV - 1,NLEV - 2, ...,0
Do for each box b € £/

If b is a parent box then
Use the operator TMM to merge multipole expansions from
its children into $&.

End if
End do

End do

Downward Pass

Comment [During the downward pass, a pth-order local expansion is generated for each box b about
its center, representing the potential in b due to all charges outside {Li(b) ULz(b)).]

Step 3

Comment [For each box b, add to its local expansion the contribution due to charges in £4(6).]

Do for each box 6j, t = 1,2, • • •, NBOX
Do for each box c € £4(61)

If the number of charges in bi < p2 then

Comment [The number of charges in bi is small. It is faster to use direct calculation
than to generate the contribution to the local expansion $4. due to charges
in c; act accordingly.]

21

Calculate potential field at each particle point in bi
directly from charges in c.

Else

Comment [The number of charges in b{ is large. It is faster to generate the contribution
to the local expansion $5. due to charges in c than to use direct calculation;
act accordingly.]

Generate a local expansion at bi's center due to
charges in c, and add to Vl^.

End if
End do

End do

Step 4

Comment [For each box b on level / with I = 2,3,..., NLEV and for each direction Dir =
Up, Down, North, South, East, West, create from box 6's multipole expansion the out-
going exponential Wf* in direction Dir, using the operator CMX- Translate W?ir

to the center of each box c e Diriist(b) using Corollary 3.2, and add the translated
expansions to its incoming exponential expansion V^Dir.]

Do for levels I = 2,3, ...,NLEV
Do for Dir = Up, Down, North, South, East, West

Do for each box 6 € 23/
Use the operator CMX to convert multipole expansion
$6 into exponential Wfir.
Do for each box c € Dirlist(b)

Translate the outgoing exponential expansion W^r to the center of box c
using the diagonal translation operator T>xx. and add the translated
expansion to the incoming exponential expansion V***.

End do
End do

Comment [For each box c on level /, convert the exponential expansion V*** into a
local expansion and add it to *c.]

Do for each box c € Bi
Use the operator CXL to convert the exponential expansion V***
into a local expansion, and add it to *SC.

End do
End do

End do

22

Step 5

Comment [For each parent box b, shift the center of its local expansion to its children.]

Do for each box 6j,t = 1,2,---,NBOX
If bi is a parent box then

Use the operator TLL to shift the local expansion ^ to the centers of its
children, and add the translated expansions to children's local expansions.

End if
End do

Evaluation of Potentials

Step 6

Comment [Include contribution to potential from local expansion at leaf nodes.]

Do for each box bit i = 1,2,..., NBOX
If bi is childless then

Calculate the potential at each charge in bi from the local expansion $&;.
End if

End do

Step 7

Comment [Include contribution from direct interactions.]

Do for each box 6»,i = 1,2,..., NBOX
If bi is childless then

Calculate the potential at each charge in bi
directly due to all charges in Li(bi).

End if
End do

Step 8

Comment [For each childless box b, evaluate the potential due to all charges in 2/3(6).]

Do for each box fe,t = 1,2, ...,NBOX
If bi is childless then

Do for each box c € Lz(bi)
If the number of charges in c < p2 then

Comment [The number of charges in c is small. It is faster to use direct calculation
than to evaluate the multipole expansion $c; act accordingly.]

23

Calculate the potential at each charge in bi
directly from charges in c.

Else

Comment [The number of charges in c is large. It is faster to evaluate the expansion
$c than to use direct calculation; act accordingly.]

Calculate the potential at each charge in 6*
from multipole expansion $c.

End if
End do

End if
End do

Remark 5.1 Step 3 in the above algorithm could be simplified without increasing the asymp-
totic CPU time estimate of the latter. Specifically, we could always generate the contribution
to the local expansion <tj due to charges in c, even when the number of charges in c is small.
However, the actual computation time would increase somewhat. A similar observation can be
made about Step 8 of the above algorithm.

Remark 5.2 In the actual implementation of the adaptive algorithm, we have introduced
several minor modifications, designed primarily to reduce the memory requirements of the
scheme. In particular, Steps 3, 4, and 5 of the downward pass have been combined to eliminate
some of the intermediate storage.

5.2 Complexity Analysis and Comparison with Tree Codes

The cost of the FMM algorithm of this paper (like the cost of older schemes of this type) can
be separated into two parts. The first part concerns the construction of the data structure
(Step 0); the second part concerns the calculation of the potentials.

If N denotes the total number of particles in the system, the CPU time estimate for the
first part is 0(N log N) in the general case and 0(N) for reasonably uniform distributions of
particles, where "bin sorting" can be used instead of the recursive procedure outlined above.
The CPU time requirements for the second part are 0(N) in all cases. In practice, however,
the first part uses a negligible proportion of the total CPU time.

There has been some confusion in the literature concerning computational complexity,
partly because of an erroneous proof in the original paper [4] addressing the two dimensional
case. A correct proof can be found in [17], under very general assumptions about the distribu-
tion of charges. We omit the detailed analysis of the asymptotic time and storage estimates for
the algorithm of this paper since it does not differ materially from that in [17]. For reasonably

24

uniform distributions, it is easy to see that the asymptotic cost of the nonadaptive algorithm
is approximately

27Ns + 2Np2 + 189 — p2 + 20—p3,
5 S

where s is the number of charges per box at the finest level. The first term comes from direct
interactions with colleagues, the second comes from forming and evaluating multipole and local
expansions at the finest level, and the last two come from multipole-to-local translations, as
shown in (56). Using symmetry considerations, it is possible to reduce the factor 189 to 40
(see Remark 3.10 above). Setting s « p3/2, we see that the work required by the nonadaptive
FMM is of the order

0{Np3'2).

Similarly, the storage costs are of the order

0(-p2)~0(JVp3/2).
5

In the adaptive case, precise estimates are more involved, but the reader will note in the
numerical examples below that both CPU times and storage requirements are at a maximum
for the most homogenous distributions.

A second area where there has been some confusion concerns comparisons of the FMM with
what are generally known as "tree codes." These were introduced independently of the FMM
by Barnes and Hut [2]. (A related scheme by Appel [1] is more like the FMM than like a tree
code.) In tree codes, all interactions are computed by either direct calculation or by evaluation
of a multipole expansion for a source box at a well-separated target position. Within the FMM,
however, one has four options for a source box 6 and a target box c:

1. compute interactions directly,

2. evaluate the multipole expansion for b at individual targets in c directly,

3. convert the field due to each source in b to a local expansion in c (which is later evaluated),

4. convert the multipole expansion in 6 to a local expansion in c (which is later evaluated).

A properly implemented FMM always selects the least expensive option (which is trivial to
choose); thus, it is always more efficient than a tree code. We omitted this decision analysis
in our original descriptions of the FMM [10, 11, 18] in order to focus on the central result,
which is option 4 above. It is this option which reduces the cost to 0(N). It is easy to see that
options 2 and 3 are appropriate only in Steps 3 and 8 above, when considering Lists 3 and 4.
The analogues of Steps 3 and 8 here are Stages 5 and 6 in [4].

25

6 Numerical Results

The algorithm described in Section 5 has been implemented in Fortran 77, and numerical
experiments have been carried out for a variety of charge distributions using a Sun UltraSPARC
workstation with a CPU clock rate of 167 MHz. The results of our experiments are summarized
in Tables 1-12, with all timings given in seconds.

In the first set of our experiments, the charges were distributed randomly but uniformly in
the cube [-0.5,0.5] x [-0.5,0.5] x [-0.5,0.5]; results are reported in Tables 1-3. In the second
set, the charges were distributed randomly in the polar angles 6 and <f> on the surface of a sphere
of radius 0.5, centered at the origin. Obviously, such a distribution is concentrated at the poles
(Figure 5); results are reported in Tables 4-6. In the third set, the charges were distributed
on the surface of a cylinder with height 1.0 and radius 0.05 (Figure 6); results are reported
in Tables 7-9. In the final set of experiments, the charges were distributed on a complicated
surface shown in Figure 7. The results for this configuration are reported in Tables 10-12. In
all our experiments, the charge strengths were taken randomly from the interval (—0.5,0.5).

For each geometry, the numerical tests were performed with three-, six-, and nine-digit
accuracy. For three-digit accuracy, the maximum number of charges allowed in a childless box
was set to be 40. Corresponding numbers for six- and nine-digit accuracies are 100 and 180,
respectively. The timings produced by the adaptive FMM algorithm were compared with those
obtained by the direct calculation. Obviously, it was not practical to apply the direct scheme
to large-scale ensembles of particles, due to excessive computation times. Thus, the direct
algorithm was used to evaluate the potentials at the first 100 elements of the ensemble, and the
resulting CPU time was extrapolated. Similarly, the accuracy of the algorithm was calculated
at the first 100 particles via formula (57) below.

The tables are organized as follows.

1. The first column lists the number of charges used in the calculation.

2. The second column lists the number of levels used in the multipole hierarchy.

3. The third column lists the order of the multipole expansion used.

4. The fourth column lists the corresponding number of exponential basis functions.

5. The fifth column lists the amount of storage used by the adaptive FMM algorithm. In the
three- and six-digit cases, we indicate the number of single precision (REAL*4) words
used, while in the nine-digit case, we indicate the number of double precision (REAL*8)
words used.

6. Columns six and seven contain the CPU times required by the adaptive FMM and the
direct calculation, respectively. In the three- and six-digit cases, both the FMM and
the direct calculations were performed in single precision; in the nine-digit case, both
calculations were performed in double precision.

26

7. Column eight lists the L2 norm of the error in the FMM approximation, which is computed
via the formula

_f££il«te)-*fo)l2V/2
(57)

where $(s,) are potentials obtained by the FMM algorithm and $(ZJ) are potentials
computed by direct calculation in double precision.

Table 1: Timing results for the FMM for 3-digit of accuracy with charges uniformly distributed in
a cube. Calculations were performed in single precision.

N Levels Boxes P i>exp Storage 2pMM Tont Error

20000 4 2267 10 52 1359822 13.3 233 7.9 • IO-4

50000 4 4681 10 52 3365896 24.7 1483 5.2 • IO-4

200000 5 33749 10 52 24789948 158 24330 8.4 • IO-4

500000 5 37449 10 52 28835176 268 138380 7.0 • IO-4

1000000 6 48324 10 52 34798506 655 563900 7.1 • IQ"4

Table 2: Timing results for the FMM for 6-digit of accuracy with charges uniformly distributed in
a cube. Calculations were performed in single precision.

N Levels Boxes P Sexp Storage 2pMM TDIR Error
20000 3 585 19 258 1057852 15.9 233 5.1 • 10~y

50000 4 2065 19 258 3383488 69 1483 2.8 • IO-7

200000 ' 4 4681 19 258 8220716 198 24330 4.9 • IO-7

500000 5 36665 19 258 64326704 586 138380 4.4 • IO-7

1000000 5 37449 19 258 66414780 1245 563900 4.4 • IQ"7

The following observations can be made from these tables.

1. The application of the FMM to large scale three dimensional problems is within practical
reach.

2. The actual GPU time required by the adaptive FMM algorithm grows approximately
linearly with the number of particles N.

3. The algorithm breaks even with the direct calculation at about N — 750 for three-digit
precision, N = 1500 for six-digit precision and N = 2500 for nine-digit precision.

4. The performance of the algorithm is quite insensitive to the distribution of charges.

27

Table 3: Timing results for the FMM for 9-digit of accuracy with charges uniformly distributed in
a cube. Calculations were performed in double precision.

N Levels Boxes P &exp Storage 2FMM ^DIR Error
20000 3 585 29 670 2012453 34 296 2.8 • 10~1U

50000 3 585 29 670 2012453 96 1920 1.6 • 10~10

200000 4 4681 29 670 16479203 385 30800 1.6 • 10-10

500000 4 4681 29 670 16479203 1219 192600 1.2 • 10"10

Table 4: Timing results for the FMM for 3-digit of accuracy with charges distributed on the surface
of a sphere. Calculations were performed in single precision.

N Levels Boxes P Stxp Storage 2pMM ■*DIR Error
20000 7 1746 10 52 891080 8.7 233 4.2 • 10"4

50000 9 4757 10 52 2394568 21.6 1483 3.6 • 10"4

200000 11 18221 10 52 9126212 97 24330 8.0 • 10~4

500000 12 40717 10 52 20413944 224 138380 6.4 • 10"4

1000000 13 90139 10 52 45287934 473 563900 5.5 • 10"4

Table 5: Timing results for the FMM for 6-digit of accuracy with charges distributed on the surface
of a sphere. Calculations were performed in single precision.

N Levels Boxes P Sexp Storage TpMM ■M)IR Error
20000 6 624 19 258 1037742 16 233 2.4 • 10"7

50000 7 1774 19 258 2774248 40 1483 2.7 • 10~7

200000 9 6790 19 258 10365264 183 24330 2.3 • lO"7

500000 10 18897 19 258 28580428 529 138380 4.3 • 10~7

1000000 11 33289 19 258 50405060 926 563900 2.9 • 10"7

Table 6: Timing results for the FMM for 9-digit of accuracy with charges distributed on the surface
of a sphere. Calculations were performed in double precision.

N Levels Boxes P Sexp Storage *FMM •M)m Error
20000 5 429 29 670 1422805 33 296 3.2 • 10-"
50000 6 1091 29 670 3616209 98 1920 8.1 • 10~n

200000 8 4342 29 670 14394468 409 30800 7.6 • lO-11

500000 10 9009 29 670 29828865 1038 192600 1.2 • 10~10

28

Table 7: Timing results for the FMM for 3-digit of accuracy with charges distributed on the surface
of a cylinder. Calculations were performed in single precision.

N Levels Boxes P i>exp Storage ^FMM 2DIR Error

20000 6 1963 10 52 1013298 8.2 233 2.7 • 10~4

50000 7 4084 10 52 2014394 20.8 1483 4.0 • 10-4

200000 8 18795 10 52 9056494 93 24330 5.1 • 10~4

500000 9 31093 10 52 15409424 194 138380 5.1 • lO"4

1000000 9 101374 10 52 49326404 457 563900 4.9 • 10"4

Table 8: Timing results for the FMM for 6-digit of accuracy with charges distributed on the surface
of a cylinder. Calculations were performed in single precision.

N Levels Boxes P &exp Storage 2pMM ■MMR Error
20000 5 505 19 258 868700 13.8 233 2.5 • MT7

50000 6 2037 19 258 3180832 39 1483 2.9 • 10~7

200000 7 7001 19 258 10582852 143 24330 5.6 • 10"7

500000 8 19849 19 258 29654956 508 138380 7.0 • 10"7

1000000 8 29341 19 258 44253336 921 563900 6.4 • 10"7

Table 9: Timing results for the FMM for 9-digit of accuracy with charges distributed on the surface
of a cylinder. Calculations were performed in double precision.

N Levels Boxes P Sap Storage ?FMM TxiVB. Error
20000 5 505 29 670 1676098 30 296 2.8 • 10~u

50000 6 751 29 670 2478241 86 1920 5.1 • lO"11

200000 7 2515 29 670 8348058 341 30800 8.2 • 10"u

500000 7 7344 29 670 24250893 795 192600 9.4 • 10~n

Table 10: Timing results for the FMM for 3-digit of accuracy with charges distributed as in Fig. 7.
Calculations were performed in single precision.

N Levels Boxes P Sexp Storage ^FMM TDIR Error
20880 7 1213 10 52 573996 6.7 243 2.2 • 10-4

51900 8 4184 10 52 1952046 17 1539 2.7-10-4

203280 9 15423 10 52 7204398 60 24730 3.4 • 10~4

503775 10 45837 10 52 21358082 164 141060 3.3 • 10"4

1007655 10 60427 10 52 28513092 282 568090 2.9 • 10"4

29

Table 11: Timing results for the FMM for 6-digit of accuracy with charges distributed as in Fig. 7.
Calculations were performed in single precision.

N Levels Boxes P &cxp Storage •?FMM ■M>m Error
20880 7 1038 19 258 1601028 17 243 1.3 • IO"7

51900 8 1403 19 258 2165338 40 1539 9.8 • IO"8

203280 9 4447 19 258 6697050 149 24730 1.2 • 10~7

503775 9 15307 19 258 22662792 323 141060 2.6 • 10~7

1007655 10 45784 19 258 67176488 714 568090 2.0 • 10"7

Table 12: Timing results for the FMM for 9-digit of accuracy with charges distributed as in Fig. 7.
Calculations were performed in double precision.

N Levels Boxes P &exp Storage ^FMM -*Dm Error
20880 6 574 29 670 1856177 46 309 3.6 • 10~12

51900 7 1191 29 670 3855741 101 2020 1.1 • io-10

203280 8 3883 29 670 12577869 342 32050 6.5 • IO"12

503775 9 11499 29 670 37263647 896 193900 1.0 • io-11

Figure 5: Charges distributed on the surface of a sphere.

30

U s&

P

Figure 6: Charges distributed on the surface of a cylinder.

Figure 7: Charges distributed on a complicated object.

31

7 Generalizations and Conclusions

We have described an adaptive FMM for the Laplace equation based on a new diagonal form
for translation operators acting on harmonic functions. It is related to the FMM for the
high-frequency Hehnholtz equation, in the sense that the latter is based on diagonal forms of
translation operators for partial wave expansions [7, 19, 20].

The present scheme admits a number of extensions. The most straightforward ones are to
the Hehnholtz equation at low frequencies and to the Yukawa equation. The corresponding
multipole expansions are well-known, and appropriate plane wave representations have been
derived (see, for example, [13]).

From a more abstract perspective, it is worth noting that the main improvement made in
this paper and in [12] over earlier FMMs is due to the use of one basis for representing the far
field due to a collection of sources (spherical harmonics) and a separate basis for translating
information between boxes in the FMM data structure (plane waves). The applicability of
this approach is not limited to the Laplace and Hehnholtz equations. We are currently in
the process of constructing such optimal (or nearly optimal) bases for more general potentials,
including those that do not satisfy a partial differential equation, but possess certain less
stringent analytical properties. A forthcoming paper [8] describes such an algorithm for the
square root of the Laplacian in two dimensions; further generalizations will be reported at a
later date.

8 Appendix

The three tables in this Appendix contain the nodes and weights (in columns 2 and 3) needed
for discretization of the outer integral in Lemma 2.8. Column 4 contains the number of dis-
cretization points needed in the inner integral, which we denote by M*.

Table 13: Nodes, weights and M| for 3-digit accuracy.

k Node Weight Ml
1 0.10934746769000 0.27107502662774 4
2 0.51769741015341 0.52769158843946 8
3 1.13306591611192 0.69151504413879 16
4 1.88135015110740 0.79834400406452 16
5 2.71785409601205 0.87164160121354 24
6 3.61650274907449 0.92643839116924 24
7 4.56271053303821 0.97294622259483 8
8 5.54900885348528 1.02413865844686 4

32

Table 14: Nodes, weights and M% for 6-digit accuracy.

k Node Weight
**

1 0.05599002531749 0.14239483712194 8
2 0.28485138101968 0.31017671029271 8
3 0.66535367065853 0.44557516683709 16
4 1.16667904805296 0.55303383994159 16
5 1.76443027413431 0.63944903363523 24
6 2.44029832236380 0.70997911214019 32
7 3.18032180991515 0.76828253949732 32
8 3.97371715777193 0.81713201141707 32
9 4.81216799410634 0.85872191623337 48

10 5.68932314511487 0.89480789582390 48
11 6.60040479444377 0.92680189417317 48
12 7.54190497469911 0.95586282708096 48
13 8.51136569298099 0.98299145008230 48
14 9.50723242759128 1.00913395385703 48
15 10.52874809650967 1.03531774600508 48
16 11.57587019602884 1.06318427913963 8
17 12.65078163968520 1.10232109521088 4

33

Table 15: Nodes, weights and M% for 9-digit accuracy.

k Node Weight Mt
1 0.03705701953816 0.09473396337900 8
2 0.19219683859955 0.21384206006426 16
3 0.46045971214897 0.32031528543989 16
4 0.82805130101422 0.41254929390710 16
5 1.28121229944787 0.49176691815621 24
6 1.80792019276297 0.55998309037174 32
7 2.39814728074333 0.61909314036708 32
8 3.04359012306582 0.67064351982741 32
9 3.73732742924096 0.71586567032066 48

10 4.47354768940212 0.75576118553096 48
11 5.24735518169467 0.79116885492295 48
12 6.05462948620944 0.82280556212477 64
13 6.89191648795972 0.85129012269433 64
14 7.75633860708838 0.87715909928110 64
15 8.64551915195994 0.90087981520398 64
16 9.55751929613924 0.92286282936149 72
17 10.49078760616705 0.94347471535979 72
18 11.44412262341269 0.96305166489156 80
19 12.41664955395045 0.98191478773737 80
20 13.40781311788324 1.00038891281291 88
21 14.41739038894472 1.01882849188686 88
22 15.44553016867884 1.03765781507554 88
23 16.49282861241170 1.05744113465683 88
24 17.56045648926099 1.07903824697122 72
25 18.65046484106274 1.10434337868208 32
26 1 19.76847686619416 1.14488166506896 4

34

References

[1] A. W. APPEL (1985), "An efficient program for many-body simulation", SJAM J. Sei.
Stat. Comput. 6, 85-103.

[2] J. BARNES AND P. HUT (1986), "A hierarchical O(NlogN) force-calculation algorithm",
Nature 324, 446-449.

[3] L. C. BlEDENHARN AND J. D. LOUCK (1981), Angular Momentum in Quantum Physics
: Theory and Application, Addison-Wesley, Reading, Mass.

[4] J. CARRIER, L. GREENGARD, AND V. ROKHLIN (1988), "A fast adaptive multipole al-
gorithm for particle simulations", SIAM J. Sei. Statist. Comput. 9, 669-686.

[5] H. CHENG (1995). Fast, accurate methods for the evaluation of harmonic fields in com-
posite materials, Ph.D. thesis, New York University.

[6] H. CHENG AND V. ROKHLIN (1998). "Compression of Translation operators in East Mul-
tipole Algorithms in Three Dimensions", in preparation.

[7] R. COIFMAN, V. ROKHLIN, AND S. WANDZURA (1993), "The fast multipole method for
the wave equation: a pedestrian prescription", IEEE Antennas and Propagation Mag. 35,
7.

[8] Z. GIMBUTAS, L. GREENGARD, AND M. MINION (1998), "A fast multipole method for
the square root of the Laplacian", in preparation.

[9] L. GREENGARD (1988), The Rapid Evaluation of Potential Fields in Particle Systems,
MIT Press, Cambridge, Mass.

[10] L. GREENGARD AND V. ROKHLIN (1987), "A fast algorithm for particle simulations", J.
Comput. Phys. 73, 325-348.

[11] L. GREENGARD AND V. ROKHLIN (1988a). "Rapid evaluation of potential fields in three
dimensions", in Vortex Methods, C. Anderson and C. Greengard (eds.), Lecture Notes in
Mathematics, vol. 1360, Springer-Verlag, 121.

[12] L. GREENGARD AND V. ROKHLIN (1997). "A new version of the fast multipole method
for the Laplace equation in three dimensions", Ada Numerica 6, 229-269.

[13] J. HUANG, L. GREENGARD, V. ROKHLIN, AND S. WANDZURA, "Accelerating East Mul-
tipole Methods for Low Frequency Scattering" CMCL Report 1998-003, New York Uni-
versity (to appear in IEEE Computational Science and Engineering Magazine).

[14] J. D. JACKSON (1975), Classical Electrodynamics, Wiley, New York.

[15] O. D. KELLOGG (1953), Foundations of Potential Theory, Dover, New York.

35

[16] MORSE AND FESHBACH (1953), Methods of Theoretical Physics, McGraw-Hill, New York.

[17] K. NABORS, F. T. KORSMEYER, F. T. LEIGHTON, AND J. WHITE (1994). "Precondi-
tioned, adaptive, multipole-accelerated iterative methods for three-dimensional first-kind
integral equations of potential theory", SIAM J. Sei. Stat. Comput. 15, 714.

[18] V. ROKHLIN (1985), "Rapid solution of integral equations of classical potential theory",
J. Comput. Phys. 60, 187-207.

[19] V. ROKHLIN (1990), "Rapid solution of integral equations of scattering theory in two
dimensions", /. Comput. Phys. 86, 414-439.

[20] V. ROKHLIN (1993), "Diagonal forms of translation operators for the Helmnoltz equation
in three dimensions", Appl. and Comput. Harmonic Analysis 1, 82-93.

[21] P. R. WALLACE (1984). Mathematical Analysis of Physical Problems, Dover, New York.

[22] C.A. WHITE AND M. HEAD-GORDON (1996). "Rotating around the quartic angular mo-
mentum barrier in Fast Multipole Method calculation", J. Chem. Phys. 105, 5061.

[23] N. YARVTN AND V. ROKHLIN (1996). "Generalized Gaussian quadratures and singular
value decompositions of integral operators", Department of Computer Science Research
Report 1109, Yale University.

36

_-

EE ::

EEEE I
_.

I EE EEI
I EEEE EE
EEEEEEEEEEEEIEEEIEEEEEEI T ++ + + +
-: :::: EE

 I__

+ + + +
 x

--
--

--

i!

I=: :::: I

:::::: ::::::± t
:::::::: ::I + +

